Spaces:
Running
Running
| import copy | |
| import json | |
| import math | |
| import weakref | |
| import os | |
| import re | |
| import sys | |
| from typing import List, Optional, Dict, Type, Union | |
| import torch | |
| from diffusers import UNet2DConditionModel, PixArtTransformer2DModel, AuraFlowTransformer2DModel | |
| from transformers import CLIPTextModel | |
| from toolkit.models.lokr import LokrModule | |
| from .config_modules import NetworkConfig | |
| from .lorm import count_parameters | |
| from .network_mixins import ToolkitNetworkMixin, ToolkitModuleMixin, ExtractableModuleMixin | |
| from toolkit.kohya_lora import LoRANetwork | |
| from toolkit.models.DoRA import DoRAModule | |
| from typing import TYPE_CHECKING | |
| if TYPE_CHECKING: | |
| from toolkit.stable_diffusion_model import StableDiffusion | |
| RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_") | |
| # diffusers specific stuff | |
| LINEAR_MODULES = [ | |
| 'Linear', | |
| 'LoRACompatibleLinear', | |
| 'QLinear', | |
| # 'GroupNorm', | |
| ] | |
| CONV_MODULES = [ | |
| 'Conv2d', | |
| 'LoRACompatibleConv', | |
| 'QConv2d', | |
| ] | |
| class LoRAModule(ToolkitModuleMixin, ExtractableModuleMixin, torch.nn.Module): | |
| """ | |
| replaces forward method of the original Linear, instead of replacing the original Linear module. | |
| """ | |
| def __init__( | |
| self, | |
| lora_name, | |
| org_module: torch.nn.Module, | |
| multiplier=1.0, | |
| lora_dim=4, | |
| alpha=1, | |
| dropout=None, | |
| rank_dropout=None, | |
| module_dropout=None, | |
| network: 'LoRASpecialNetwork' = None, | |
| use_bias: bool = False, | |
| **kwargs | |
| ): | |
| self.can_merge_in = True | |
| """if alpha == 0 or None, alpha is rank (no scaling).""" | |
| ToolkitModuleMixin.__init__(self, network=network) | |
| torch.nn.Module.__init__(self) | |
| self.lora_name = lora_name | |
| self.orig_module_ref = weakref.ref(org_module) | |
| self.scalar = torch.tensor(1.0, device=org_module.weight.device) | |
| # check if parent has bias. if not force use_bias to False | |
| if org_module.bias is None: | |
| use_bias = False | |
| if org_module.__class__.__name__ in CONV_MODULES: | |
| in_dim = org_module.in_channels | |
| out_dim = org_module.out_channels | |
| else: | |
| in_dim = org_module.in_features | |
| out_dim = org_module.out_features | |
| # if limit_rank: | |
| # self.lora_dim = min(lora_dim, in_dim, out_dim) | |
| # if self.lora_dim != lora_dim: | |
| # print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}") | |
| # else: | |
| self.lora_dim = lora_dim | |
| if org_module.__class__.__name__ in CONV_MODULES: | |
| kernel_size = org_module.kernel_size | |
| stride = org_module.stride | |
| padding = org_module.padding | |
| self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False) | |
| self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=use_bias) | |
| else: | |
| self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False) | |
| self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=use_bias) | |
| if type(alpha) == torch.Tensor: | |
| alpha = alpha.detach().float().numpy() # without casting, bf16 causes error | |
| alpha = self.lora_dim if alpha is None or alpha == 0 else alpha | |
| self.scale = alpha / self.lora_dim | |
| self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える | |
| # same as microsoft's | |
| torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) | |
| torch.nn.init.zeros_(self.lora_up.weight) | |
| self.multiplier: Union[float, List[float]] = multiplier | |
| # wrap the original module so it doesn't get weights updated | |
| self.org_module = [org_module] | |
| self.dropout = dropout | |
| self.rank_dropout = rank_dropout | |
| self.module_dropout = module_dropout | |
| self.is_checkpointing = False | |
| def apply_to(self): | |
| self.org_forward = self.org_module[0].forward | |
| self.org_module[0].forward = self.forward | |
| # del self.org_module | |
| class LoRASpecialNetwork(ToolkitNetworkMixin, LoRANetwork): | |
| NUM_OF_BLOCKS = 12 # フルモデル相当でのup,downの層の数 | |
| # UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"] | |
| # UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "ResnetBlock2D"] | |
| UNET_TARGET_REPLACE_MODULE = ["UNet2DConditionModel"] | |
| # UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"] | |
| UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["UNet2DConditionModel"] | |
| TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] | |
| LORA_PREFIX_UNET = "lora_unet" | |
| PEFT_PREFIX_UNET = "unet" | |
| LORA_PREFIX_TEXT_ENCODER = "lora_te" | |
| # SDXL: must starts with LORA_PREFIX_TEXT_ENCODER | |
| LORA_PREFIX_TEXT_ENCODER1 = "lora_te1" | |
| LORA_PREFIX_TEXT_ENCODER2 = "lora_te2" | |
| def __init__( | |
| self, | |
| text_encoder: Union[List[CLIPTextModel], CLIPTextModel], | |
| unet, | |
| multiplier: float = 1.0, | |
| lora_dim: int = 4, | |
| alpha: float = 1, | |
| dropout: Optional[float] = None, | |
| rank_dropout: Optional[float] = None, | |
| module_dropout: Optional[float] = None, | |
| conv_lora_dim: Optional[int] = None, | |
| conv_alpha: Optional[float] = None, | |
| block_dims: Optional[List[int]] = None, | |
| block_alphas: Optional[List[float]] = None, | |
| conv_block_dims: Optional[List[int]] = None, | |
| conv_block_alphas: Optional[List[float]] = None, | |
| modules_dim: Optional[Dict[str, int]] = None, | |
| modules_alpha: Optional[Dict[str, int]] = None, | |
| module_class: Type[object] = LoRAModule, | |
| varbose: Optional[bool] = False, | |
| train_text_encoder: Optional[bool] = True, | |
| use_text_encoder_1: bool = True, | |
| use_text_encoder_2: bool = True, | |
| train_unet: Optional[bool] = True, | |
| is_sdxl=False, | |
| is_v2=False, | |
| is_v3=False, | |
| is_pixart: bool = False, | |
| is_auraflow: bool = False, | |
| is_flux: bool = False, | |
| is_lumina2: bool = False, | |
| use_bias: bool = False, | |
| is_lorm: bool = False, | |
| ignore_if_contains = None, | |
| only_if_contains = None, | |
| parameter_threshold: float = 0.0, | |
| attn_only: bool = False, | |
| target_lin_modules=LoRANetwork.UNET_TARGET_REPLACE_MODULE, | |
| target_conv_modules=LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3, | |
| network_type: str = "lora", | |
| full_train_in_out: bool = False, | |
| transformer_only: bool = False, | |
| peft_format: bool = False, | |
| is_assistant_adapter: bool = False, | |
| is_transformer: bool = False, | |
| base_model: 'StableDiffusion' = None, | |
| **kwargs | |
| ) -> None: | |
| """ | |
| LoRA network: すごく引数が多いが、パターンは以下の通り | |
| 1. lora_dimとalphaを指定 | |
| 2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定 | |
| 3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない | |
| 4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する | |
| 5. modules_dimとmodules_alphaを指定 (推論用) | |
| """ | |
| # call the parent of the parent we are replacing (LoRANetwork) init | |
| torch.nn.Module.__init__(self) | |
| ToolkitNetworkMixin.__init__( | |
| self, | |
| train_text_encoder=train_text_encoder, | |
| train_unet=train_unet, | |
| is_sdxl=is_sdxl, | |
| is_v2=is_v2, | |
| is_lorm=is_lorm, | |
| **kwargs | |
| ) | |
| if ignore_if_contains is None: | |
| ignore_if_contains = [] | |
| self.ignore_if_contains = ignore_if_contains | |
| self.transformer_only = transformer_only | |
| self.base_model_ref = None | |
| if base_model is not None: | |
| self.base_model_ref = weakref.ref(base_model) | |
| self.only_if_contains: Union[List, None] = only_if_contains | |
| self.lora_dim = lora_dim | |
| self.alpha = alpha | |
| self.conv_lora_dim = conv_lora_dim | |
| self.conv_alpha = conv_alpha | |
| self.dropout = dropout | |
| self.rank_dropout = rank_dropout | |
| self.module_dropout = module_dropout | |
| self.is_checkpointing = False | |
| self._multiplier: float = 1.0 | |
| self.is_active: bool = False | |
| self.torch_multiplier = None | |
| # triggers the state updates | |
| self.multiplier = multiplier | |
| self.is_sdxl = is_sdxl | |
| self.is_v2 = is_v2 | |
| self.is_v3 = is_v3 | |
| self.is_pixart = is_pixart | |
| self.is_auraflow = is_auraflow | |
| self.is_flux = is_flux | |
| self.is_lumina2 = is_lumina2 | |
| self.network_type = network_type | |
| self.is_assistant_adapter = is_assistant_adapter | |
| if self.network_type.lower() == "dora": | |
| self.module_class = DoRAModule | |
| module_class = DoRAModule | |
| elif self.network_type.lower() == "lokr": | |
| self.module_class = LokrModule | |
| module_class = LokrModule | |
| self.network_config: NetworkConfig = kwargs.get("network_config", None) | |
| self.peft_format = peft_format | |
| self.is_transformer = is_transformer | |
| # always do peft for flux only for now | |
| if self.is_flux or self.is_v3 or self.is_lumina2 or is_transformer: | |
| # don't do peft format for lokr | |
| if self.network_type.lower() != "lokr": | |
| self.peft_format = True | |
| if self.peft_format: | |
| # no alpha for peft | |
| self.alpha = self.lora_dim | |
| alpha = self.alpha | |
| self.conv_alpha = self.conv_lora_dim | |
| conv_alpha = self.conv_alpha | |
| self.full_train_in_out = full_train_in_out | |
| if modules_dim is not None: | |
| print(f"create LoRA network from weights") | |
| elif block_dims is not None: | |
| print(f"create LoRA network from block_dims") | |
| print( | |
| f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}") | |
| print(f"block_dims: {block_dims}") | |
| print(f"block_alphas: {block_alphas}") | |
| if conv_block_dims is not None: | |
| print(f"conv_block_dims: {conv_block_dims}") | |
| print(f"conv_block_alphas: {conv_block_alphas}") | |
| else: | |
| print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}") | |
| print( | |
| f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}") | |
| if self.conv_lora_dim is not None: | |
| print( | |
| f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}") | |
| # create module instances | |
| def create_modules( | |
| is_unet: bool, | |
| text_encoder_idx: Optional[int], # None, 1, 2 | |
| root_module: torch.nn.Module, | |
| target_replace_modules: List[torch.nn.Module], | |
| ) -> List[LoRAModule]: | |
| unet_prefix = self.LORA_PREFIX_UNET | |
| if self.peft_format: | |
| unet_prefix = self.PEFT_PREFIX_UNET | |
| if is_pixart or is_v3 or is_auraflow or is_flux or is_lumina2 or self.is_transformer: | |
| unet_prefix = f"lora_transformer" | |
| if self.peft_format: | |
| unet_prefix = "transformer" | |
| prefix = ( | |
| unet_prefix | |
| if is_unet | |
| else ( | |
| self.LORA_PREFIX_TEXT_ENCODER | |
| if text_encoder_idx is None | |
| else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2) | |
| ) | |
| ) | |
| loras = [] | |
| skipped = [] | |
| attached_modules = [] | |
| lora_shape_dict = {} | |
| for name, module in root_module.named_modules(): | |
| if module.__class__.__name__ in target_replace_modules: | |
| for child_name, child_module in module.named_modules(): | |
| is_linear = child_module.__class__.__name__ in LINEAR_MODULES | |
| is_conv2d = child_module.__class__.__name__ in CONV_MODULES | |
| is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) | |
| lora_name = [prefix, name, child_name] | |
| # filter out blank | |
| lora_name = [x for x in lora_name if x and x != ""] | |
| lora_name = ".".join(lora_name) | |
| # if it doesnt have a name, it wil have two dots | |
| lora_name.replace("..", ".") | |
| clean_name = lora_name | |
| if self.peft_format: | |
| # we replace this on saving | |
| lora_name = lora_name.replace(".", "$$") | |
| else: | |
| lora_name = lora_name.replace(".", "_") | |
| skip = False | |
| if any([word in clean_name for word in self.ignore_if_contains]): | |
| skip = True | |
| # see if it is over threshold | |
| if count_parameters(child_module) < parameter_threshold: | |
| skip = True | |
| if self.transformer_only and is_unet: | |
| transformer_block_names = None | |
| if base_model is not None: | |
| transformer_block_names = base_model.get_transformer_block_names() | |
| if transformer_block_names is not None: | |
| if not any([name in lora_name for name in transformer_block_names]): | |
| skip = True | |
| else: | |
| if self.is_pixart: | |
| if "transformer_blocks" not in lora_name: | |
| skip = True | |
| if self.is_flux: | |
| if "transformer_blocks" not in lora_name: | |
| skip = True | |
| if self.is_lumina2: | |
| if "layers$$" not in lora_name and "noise_refiner$$" not in lora_name and "context_refiner$$" not in lora_name: | |
| skip = True | |
| if self.is_v3: | |
| if "transformer_blocks" not in lora_name: | |
| skip = True | |
| # handle custom models | |
| if hasattr(root_module, 'transformer_blocks'): | |
| if "transformer_blocks" not in lora_name: | |
| skip = True | |
| if hasattr(root_module, 'blocks'): | |
| if "blocks" not in lora_name: | |
| skip = True | |
| if hasattr(root_module, 'single_blocks'): | |
| if "single_blocks" not in lora_name and "double_blocks" not in lora_name: | |
| skip = True | |
| if (is_linear or is_conv2d) and not skip: | |
| if self.only_if_contains is not None: | |
| if not any([word in clean_name for word in self.only_if_contains]) and not any([word in lora_name for word in self.only_if_contains]): | |
| continue | |
| dim = None | |
| alpha = None | |
| if modules_dim is not None: | |
| # モジュール指定あり | |
| if lora_name in modules_dim: | |
| dim = modules_dim[lora_name] | |
| alpha = modules_alpha[lora_name] | |
| else: | |
| # 通常、すべて対象とする | |
| if is_linear or is_conv2d_1x1: | |
| dim = self.lora_dim | |
| alpha = self.alpha | |
| elif self.conv_lora_dim is not None: | |
| dim = self.conv_lora_dim | |
| alpha = self.conv_alpha | |
| if dim is None or dim == 0: | |
| # skipした情報を出力 | |
| if is_linear or is_conv2d_1x1 or ( | |
| self.conv_lora_dim is not None or conv_block_dims is not None): | |
| skipped.append(lora_name) | |
| continue | |
| module_kwargs = {} | |
| if self.network_type.lower() == "lokr": | |
| module_kwargs["factor"] = self.network_config.lokr_factor | |
| lora = module_class( | |
| lora_name, | |
| child_module, | |
| self.multiplier, | |
| dim, | |
| alpha, | |
| dropout=dropout, | |
| rank_dropout=rank_dropout, | |
| module_dropout=module_dropout, | |
| network=self, | |
| parent=module, | |
| use_bias=use_bias, | |
| **module_kwargs | |
| ) | |
| loras.append(lora) | |
| if self.network_type.lower() == "lokr": | |
| try: | |
| lora_shape_dict[lora_name] = [list(lora.lokr_w1.weight.shape), list(lora.lokr_w2.weight.shape)] | |
| except: | |
| pass | |
| else: | |
| lora_shape_dict[lora_name] = [list(lora.lora_down.weight.shape), list(lora.lora_up.weight.shape)] | |
| return loras, skipped | |
| text_encoders = text_encoder if type(text_encoder) == list else [text_encoder] | |
| # create LoRA for text encoder | |
| # 毎回すべてのモジュールを作るのは無駄なので要検討 | |
| self.text_encoder_loras = [] | |
| skipped_te = [] | |
| if train_text_encoder: | |
| for i, text_encoder in enumerate(text_encoders): | |
| if not use_text_encoder_1 and i == 0: | |
| continue | |
| if not use_text_encoder_2 and i == 1: | |
| continue | |
| if len(text_encoders) > 1: | |
| index = i + 1 | |
| print(f"create LoRA for Text Encoder {index}:") | |
| else: | |
| index = None | |
| print(f"create LoRA for Text Encoder:") | |
| replace_modules = LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE | |
| if self.is_pixart: | |
| replace_modules = ["T5EncoderModel"] | |
| text_encoder_loras, skipped = create_modules(False, index, text_encoder, replace_modules) | |
| self.text_encoder_loras.extend(text_encoder_loras) | |
| skipped_te += skipped | |
| print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.") | |
| # extend U-Net target modules if conv2d 3x3 is enabled, or load from weights | |
| target_modules = target_lin_modules | |
| if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None: | |
| target_modules += target_conv_modules | |
| if is_v3: | |
| target_modules = ["SD3Transformer2DModel"] | |
| if is_pixart: | |
| target_modules = ["PixArtTransformer2DModel"] | |
| if is_auraflow: | |
| target_modules = ["AuraFlowTransformer2DModel"] | |
| if is_flux: | |
| target_modules = ["FluxTransformer2DModel"] | |
| if is_lumina2: | |
| target_modules = ["Lumina2Transformer2DModel"] | |
| if train_unet: | |
| self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules) | |
| else: | |
| self.unet_loras = [] | |
| skipped_un = [] | |
| print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.") | |
| skipped = skipped_te + skipped_un | |
| if varbose and len(skipped) > 0: | |
| print( | |
| f"because block_lr_weight is 0 or dim (rank) is 0, {len(skipped)} LoRA modules are skipped / block_lr_weightまたはdim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:" | |
| ) | |
| for name in skipped: | |
| print(f"\t{name}") | |
| self.up_lr_weight: List[float] = None | |
| self.down_lr_weight: List[float] = None | |
| self.mid_lr_weight: float = None | |
| self.block_lr = False | |
| # assertion | |
| names = set() | |
| for lora in self.text_encoder_loras + self.unet_loras: | |
| assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" | |
| names.add(lora.lora_name) | |
| if self.full_train_in_out: | |
| print("full train in out") | |
| # we are going to retrain the main in out layers for VAE change usually | |
| if self.is_pixart: | |
| transformer: PixArtTransformer2DModel = unet | |
| self.transformer_pos_embed = copy.deepcopy(transformer.pos_embed) | |
| self.transformer_proj_out = copy.deepcopy(transformer.proj_out) | |
| transformer.pos_embed = self.transformer_pos_embed | |
| transformer.proj_out = self.transformer_proj_out | |
| elif self.is_auraflow: | |
| transformer: AuraFlowTransformer2DModel = unet | |
| self.transformer_pos_embed = copy.deepcopy(transformer.pos_embed) | |
| self.transformer_proj_out = copy.deepcopy(transformer.proj_out) | |
| transformer.pos_embed = self.transformer_pos_embed | |
| transformer.proj_out = self.transformer_proj_out | |
| else: | |
| unet: UNet2DConditionModel = unet | |
| unet_conv_in: torch.nn.Conv2d = unet.conv_in | |
| unet_conv_out: torch.nn.Conv2d = unet.conv_out | |
| # clone these and replace their forwards with ours | |
| self.unet_conv_in = copy.deepcopy(unet_conv_in) | |
| self.unet_conv_out = copy.deepcopy(unet_conv_out) | |
| unet.conv_in = self.unet_conv_in | |
| unet.conv_out = self.unet_conv_out | |
| def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr): | |
| # call Lora prepare_optimizer_params | |
| all_params = super().prepare_optimizer_params(text_encoder_lr, unet_lr, default_lr) | |
| if self.full_train_in_out: | |
| if self.is_pixart or self.is_auraflow or self.is_flux: | |
| all_params.append({"lr": unet_lr, "params": list(self.transformer_pos_embed.parameters())}) | |
| all_params.append({"lr": unet_lr, "params": list(self.transformer_proj_out.parameters())}) | |
| else: | |
| all_params.append({"lr": unet_lr, "params": list(self.unet_conv_in.parameters())}) | |
| all_params.append({"lr": unet_lr, "params": list(self.unet_conv_out.parameters())}) | |
| return all_params | |