Spaces:
Running
Running
| # ref https://huggingface.co/spaces/editing-images/ledits/blob/main/inversion_utils.py | |
| import torch | |
| import os | |
| from tqdm import tqdm | |
| from toolkit import train_tools | |
| from toolkit.prompt_utils import PromptEmbeds | |
| from toolkit.stable_diffusion_model import StableDiffusion | |
| def mu_tilde(model, xt, x0, timestep): | |
| "mu_tilde(x_t, x_0) DDPM paper eq. 7" | |
| prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps | |
| alpha_prod_t_prev = model.scheduler.alphas_cumprod[ | |
| prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod | |
| alpha_t = model.scheduler.alphas[timestep] | |
| beta_t = 1 - alpha_t | |
| alpha_bar = model.scheduler.alphas_cumprod[timestep] | |
| return ((alpha_prod_t_prev ** 0.5 * beta_t) / (1 - alpha_bar)) * x0 + ( | |
| (alpha_t ** 0.5 * (1 - alpha_prod_t_prev)) / (1 - alpha_bar)) * xt | |
| def sample_xts_from_x0(sd: StableDiffusion, sample: torch.Tensor, num_inference_steps=50): | |
| """ | |
| Samples from P(x_1:T|x_0) | |
| """ | |
| # torch.manual_seed(43256465436) | |
| alpha_bar = sd.noise_scheduler.alphas_cumprod | |
| sqrt_one_minus_alpha_bar = (1 - alpha_bar) ** 0.5 | |
| alphas = sd.noise_scheduler.alphas | |
| betas = 1 - alphas | |
| # variance_noise_shape = ( | |
| # num_inference_steps, | |
| # sd.unet.in_channels, | |
| # sd.unet.sample_size, | |
| # sd.unet.sample_size) | |
| variance_noise_shape = list(sample.shape) | |
| variance_noise_shape[0] = num_inference_steps | |
| timesteps = sd.noise_scheduler.timesteps.to(sd.device) | |
| t_to_idx = {int(v): k for k, v in enumerate(timesteps)} | |
| xts = torch.zeros(variance_noise_shape).to(sample.device, dtype=torch.float16) | |
| for t in reversed(timesteps): | |
| idx = t_to_idx[int(t)] | |
| xts[idx] = sample * (alpha_bar[t] ** 0.5) + torch.randn_like(sample, dtype=torch.float16) * sqrt_one_minus_alpha_bar[t] | |
| xts = torch.cat([xts, sample], dim=0) | |
| return xts | |
| def encode_text(model, prompts): | |
| text_input = model.tokenizer( | |
| prompts, | |
| padding="max_length", | |
| max_length=model.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| with torch.no_grad(): | |
| text_encoding = model.text_encoder(text_input.input_ids.to(model.device))[0] | |
| return text_encoding | |
| def forward_step(sd: StableDiffusion, model_output, timestep, sample): | |
| next_timestep = min( | |
| sd.noise_scheduler.config['num_train_timesteps'] - 2, | |
| timestep + sd.noise_scheduler.config['num_train_timesteps'] // sd.noise_scheduler.num_inference_steps | |
| ) | |
| # 2. compute alphas, betas | |
| alpha_prod_t = sd.noise_scheduler.alphas_cumprod[timestep] | |
| # alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] if next_ltimestep >= 0 else self.scheduler.final_alpha_cumprod | |
| beta_prod_t = 1 - alpha_prod_t | |
| # 3. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
| # 5. TODO: simple noising implementation | |
| next_sample = sd.noise_scheduler.add_noise( | |
| pred_original_sample, | |
| model_output, | |
| torch.LongTensor([next_timestep])) | |
| return next_sample | |
| def get_variance(sd: StableDiffusion, timestep): # , prev_timestep): | |
| prev_timestep = timestep - sd.noise_scheduler.config['num_train_timesteps'] // sd.noise_scheduler.num_inference_steps | |
| alpha_prod_t = sd.noise_scheduler.alphas_cumprod[timestep] | |
| alpha_prod_t_prev = sd.noise_scheduler.alphas_cumprod[ | |
| prev_timestep] if prev_timestep >= 0 else sd.noise_scheduler.final_alpha_cumprod | |
| beta_prod_t = 1 - alpha_prod_t | |
| beta_prod_t_prev = 1 - alpha_prod_t_prev | |
| variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) | |
| return variance | |
| def get_time_ids_from_latents(sd: StableDiffusion, latents: torch.Tensor): | |
| VAE_SCALE_FACTOR = 2 ** (len(sd.vae.config['block_out_channels']) - 1) | |
| if sd.is_xl: | |
| bs, ch, h, w = list(latents.shape) | |
| height = h * VAE_SCALE_FACTOR | |
| width = w * VAE_SCALE_FACTOR | |
| dtype = latents.dtype | |
| # just do it without any cropping nonsense | |
| target_size = (height, width) | |
| original_size = (height, width) | |
| crops_coords_top_left = (0, 0) | |
| add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| add_time_ids = torch.tensor([add_time_ids]) | |
| add_time_ids = add_time_ids.to(latents.device, dtype=dtype) | |
| batch_time_ids = torch.cat( | |
| [add_time_ids for _ in range(bs)] | |
| ) | |
| return batch_time_ids | |
| else: | |
| return None | |
| def inversion_forward_process( | |
| sd: StableDiffusion, | |
| sample: torch.Tensor, | |
| conditional_embeddings: PromptEmbeds, | |
| unconditional_embeddings: PromptEmbeds, | |
| etas=None, | |
| prog_bar=False, | |
| cfg_scale=3.5, | |
| num_inference_steps=50, eps=None | |
| ): | |
| current_num_timesteps = len(sd.noise_scheduler.timesteps) | |
| sd.noise_scheduler.set_timesteps(num_inference_steps, device=sd.device) | |
| timesteps = sd.noise_scheduler.timesteps.to(sd.device) | |
| # variance_noise_shape = ( | |
| # num_inference_steps, | |
| # sd.unet.in_channels, | |
| # sd.unet.sample_size, | |
| # sd.unet.sample_size | |
| # ) | |
| variance_noise_shape = list(sample.shape) | |
| variance_noise_shape[0] = num_inference_steps | |
| if etas is None or (type(etas) in [int, float] and etas == 0): | |
| eta_is_zero = True | |
| zs = None | |
| else: | |
| eta_is_zero = False | |
| if type(etas) in [int, float]: etas = [etas] * sd.noise_scheduler.num_inference_steps | |
| xts = sample_xts_from_x0(sd, sample, num_inference_steps=num_inference_steps) | |
| alpha_bar = sd.noise_scheduler.alphas_cumprod | |
| zs = torch.zeros(size=variance_noise_shape, device=sd.device, dtype=torch.float16) | |
| t_to_idx = {int(v): k for k, v in enumerate(timesteps)} | |
| noisy_sample = sample | |
| op = tqdm(reversed(timesteps), desc="Inverting...") if prog_bar else reversed(timesteps) | |
| for timestep in op: | |
| idx = t_to_idx[int(timestep)] | |
| # 1. predict noise residual | |
| if not eta_is_zero: | |
| noisy_sample = xts[idx][None] | |
| added_cond_kwargs = {} | |
| with torch.no_grad(): | |
| text_embeddings = train_tools.concat_prompt_embeddings( | |
| unconditional_embeddings, # negative embedding | |
| conditional_embeddings, # positive embedding | |
| 1, # batch size | |
| ) | |
| if sd.is_xl: | |
| add_time_ids = get_time_ids_from_latents(sd, noisy_sample) | |
| # add extra for cfg | |
| add_time_ids = torch.cat( | |
| [add_time_ids] * 2, dim=0 | |
| ) | |
| added_cond_kwargs = { | |
| "text_embeds": text_embeddings.pooled_embeds, | |
| "time_ids": add_time_ids, | |
| } | |
| # double up for cfg | |
| latent_model_input = torch.cat( | |
| [noisy_sample] * 2, dim=0 | |
| ) | |
| noise_pred = sd.unet( | |
| latent_model_input, | |
| timestep, | |
| encoder_hidden_states=text_embeddings.text_embeds, | |
| added_cond_kwargs=added_cond_kwargs, | |
| ).sample | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| # out = sd.unet.forward(noisy_sample, timestep=timestep, encoder_hidden_states=uncond_embedding) | |
| # cond_out = sd.unet.forward(noisy_sample, timestep=timestep, encoder_hidden_states=text_embeddings) | |
| noise_pred = noise_pred_uncond + cfg_scale * (noise_pred_text - noise_pred_uncond) | |
| if eta_is_zero: | |
| # 2. compute more noisy image and set x_t -> x_t+1 | |
| noisy_sample = forward_step(sd, noise_pred, timestep, noisy_sample) | |
| xts = None | |
| else: | |
| xtm1 = xts[idx + 1][None] | |
| # pred of x0 | |
| pred_original_sample = (noisy_sample - (1 - alpha_bar[timestep]) ** 0.5 * noise_pred) / alpha_bar[ | |
| timestep] ** 0.5 | |
| # direction to xt | |
| prev_timestep = timestep - sd.noise_scheduler.config[ | |
| 'num_train_timesteps'] // sd.noise_scheduler.num_inference_steps | |
| alpha_prod_t_prev = sd.noise_scheduler.alphas_cumprod[ | |
| prev_timestep] if prev_timestep >= 0 else sd.noise_scheduler.final_alpha_cumprod | |
| variance = get_variance(sd, timestep) | |
| pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance) ** (0.5) * noise_pred | |
| mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
| z = (xtm1 - mu_xt) / (etas[idx] * variance ** 0.5) | |
| zs[idx] = z | |
| # correction to avoid error accumulation | |
| xtm1 = mu_xt + (etas[idx] * variance ** 0.5) * z | |
| xts[idx + 1] = xtm1 | |
| if not zs is None: | |
| zs[-1] = torch.zeros_like(zs[-1]) | |
| # restore timesteps | |
| sd.noise_scheduler.set_timesteps(current_num_timesteps, device=sd.device) | |
| return noisy_sample, zs, xts | |
| # | |
| # def inversion_forward_process( | |
| # model, | |
| # sample, | |
| # etas=None, | |
| # prog_bar=False, | |
| # prompt="", | |
| # cfg_scale=3.5, | |
| # num_inference_steps=50, eps=None | |
| # ): | |
| # if not prompt == "": | |
| # text_embeddings = encode_text(model, prompt) | |
| # uncond_embedding = encode_text(model, "") | |
| # timesteps = model.scheduler.timesteps.to(model.device) | |
| # variance_noise_shape = ( | |
| # num_inference_steps, | |
| # model.unet.in_channels, | |
| # model.unet.sample_size, | |
| # model.unet.sample_size) | |
| # if etas is None or (type(etas) in [int, float] and etas == 0): | |
| # eta_is_zero = True | |
| # zs = None | |
| # else: | |
| # eta_is_zero = False | |
| # if type(etas) in [int, float]: etas = [etas] * model.scheduler.num_inference_steps | |
| # xts = sample_xts_from_x0(model, sample, num_inference_steps=num_inference_steps) | |
| # alpha_bar = model.scheduler.alphas_cumprod | |
| # zs = torch.zeros(size=variance_noise_shape, device=model.device, dtype=torch.float16) | |
| # | |
| # t_to_idx = {int(v): k for k, v in enumerate(timesteps)} | |
| # noisy_sample = sample | |
| # op = tqdm(reversed(timesteps), desc="Inverting...") if prog_bar else reversed(timesteps) | |
| # | |
| # for t in op: | |
| # idx = t_to_idx[int(t)] | |
| # # 1. predict noise residual | |
| # if not eta_is_zero: | |
| # noisy_sample = xts[idx][None] | |
| # | |
| # with torch.no_grad(): | |
| # out = model.unet.forward(noisy_sample, timestep=t, encoder_hidden_states=uncond_embedding) | |
| # if not prompt == "": | |
| # cond_out = model.unet.forward(noisy_sample, timestep=t, encoder_hidden_states=text_embeddings) | |
| # | |
| # if not prompt == "": | |
| # ## classifier free guidance | |
| # noise_pred = out.sample + cfg_scale * (cond_out.sample - out.sample) | |
| # else: | |
| # noise_pred = out.sample | |
| # | |
| # if eta_is_zero: | |
| # # 2. compute more noisy image and set x_t -> x_t+1 | |
| # noisy_sample = forward_step(model, noise_pred, t, noisy_sample) | |
| # | |
| # else: | |
| # xtm1 = xts[idx + 1][None] | |
| # # pred of x0 | |
| # pred_original_sample = (noisy_sample - (1 - alpha_bar[t]) ** 0.5 * noise_pred) / alpha_bar[t] ** 0.5 | |
| # | |
| # # direction to xt | |
| # prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps | |
| # alpha_prod_t_prev = model.scheduler.alphas_cumprod[ | |
| # prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod | |
| # | |
| # variance = get_variance(model, t) | |
| # pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance) ** (0.5) * noise_pred | |
| # | |
| # mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
| # | |
| # z = (xtm1 - mu_xt) / (etas[idx] * variance ** 0.5) | |
| # zs[idx] = z | |
| # | |
| # # correction to avoid error accumulation | |
| # xtm1 = mu_xt + (etas[idx] * variance ** 0.5) * z | |
| # xts[idx + 1] = xtm1 | |
| # | |
| # if not zs is None: | |
| # zs[-1] = torch.zeros_like(zs[-1]) | |
| # | |
| # return noisy_sample, zs, xts | |
| def reverse_step(model, model_output, timestep, sample, eta=0, variance_noise=None): | |
| # 1. get previous step value (=t-1) | |
| prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps | |
| # 2. compute alphas, betas | |
| alpha_prod_t = model.scheduler.alphas_cumprod[timestep] | |
| alpha_prod_t_prev = model.scheduler.alphas_cumprod[ | |
| prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod | |
| beta_prod_t = 1 - alpha_prod_t | |
| # 3. compute predicted original sample from predicted noise also called | |
| # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) | |
| # 5. compute variance: "sigma_t(η)" -> see formula (16) | |
| # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) | |
| # variance = self.scheduler._get_variance(timestep, prev_timestep) | |
| variance = get_variance(model, timestep) # , prev_timestep) | |
| std_dev_t = eta * variance ** (0.5) | |
| # Take care of asymetric reverse process (asyrp) | |
| model_output_direction = model_output | |
| # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| # pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction | |
| pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction | |
| # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf | |
| prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction | |
| # 8. Add noice if eta > 0 | |
| if eta > 0: | |
| if variance_noise is None: | |
| variance_noise = torch.randn(model_output.shape, device=model.device, dtype=torch.float16) | |
| sigma_z = eta * variance ** (0.5) * variance_noise | |
| prev_sample = prev_sample + sigma_z | |
| return prev_sample | |
| def inversion_reverse_process( | |
| model, | |
| xT, | |
| etas=0, | |
| prompts="", | |
| cfg_scales=None, | |
| prog_bar=False, | |
| zs=None, | |
| controller=None, | |
| asyrp=False): | |
| batch_size = len(prompts) | |
| cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1, 1, 1, 1).to(model.device, dtype=torch.float16) | |
| text_embeddings = encode_text(model, prompts) | |
| uncond_embedding = encode_text(model, [""] * batch_size) | |
| if etas is None: etas = 0 | |
| if type(etas) in [int, float]: etas = [etas] * model.scheduler.num_inference_steps | |
| assert len(etas) == model.scheduler.num_inference_steps | |
| timesteps = model.scheduler.timesteps.to(model.device) | |
| xt = xT.expand(batch_size, -1, -1, -1) | |
| op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:] | |
| t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])} | |
| for t in op: | |
| idx = t_to_idx[int(t)] | |
| ## Unconditional embedding | |
| with torch.no_grad(): | |
| uncond_out = model.unet.forward(xt, timestep=t, | |
| encoder_hidden_states=uncond_embedding) | |
| ## Conditional embedding | |
| if prompts: | |
| with torch.no_grad(): | |
| cond_out = model.unet.forward(xt, timestep=t, | |
| encoder_hidden_states=text_embeddings) | |
| z = zs[idx] if not zs is None else None | |
| z = z.expand(batch_size, -1, -1, -1) | |
| if prompts: | |
| ## classifier free guidance | |
| noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample) | |
| else: | |
| noise_pred = uncond_out.sample | |
| # 2. compute less noisy image and set x_t -> x_t-1 | |
| xt = reverse_step(model, noise_pred, t, xt, eta=etas[idx], variance_noise=z) | |
| if controller is not None: | |
| xt = controller.step_callback(xt) | |
| return xt, zs | |