ohamlab-ai-toolkit / autorun_lora_gradio.py
rahul7star's picture
Update autorun_lora_gradio.py
65f8095 verified
raw
history blame
6.8 kB
import os
import uuid
import yaml
import json
import shutil
import torch
from pathlib import Path
from PIL import Image
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from huggingface_hub import hf_hub_download, whoami
# ========== CONFIGURATION ==========
REPO_ID = "rahul7star/ohamlab"
FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81"
CONCEPT_SENTENCE = "ohamlab style"
LORA_NAME = "ohami_filter_autorun"
# ========== FASTAPI APP ==========
app = FastAPI()
# ========== HELPERS ==========
def create_dataset(images, *captions):
destination_folder = f"datasets_{uuid.uuid4()}"
os.makedirs(destination_folder, exist_ok=True)
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
with open(jsonl_file_path, "a") as jsonl_file:
for index, image in enumerate(images):
new_image_path = shutil.copy(str(image), destination_folder)
caption = captions[index]
file_name = os.path.basename(new_image_path)
data = {"file_name": file_name, "prompt": caption}
jsonl_file.write(json.dumps(data) + "\n")
return destination_folder
def recursive_update(d, u):
for k, v in u.items():
if isinstance(v, dict) and v:
d[k] = recursive_update(d.get(k, {}), v)
else:
d[k] = v
return d
def start_training(
lora_name,
concept_sentence,
steps,
lr,
rank,
model_to_train,
low_vram,
dataset_folder,
sample_1,
sample_2,
sample_3,
use_more_advanced_options,
more_advanced_options,
):
try:
user = whoami()
username = user.get("name", "anonymous")
push_to_hub = True
except:
username = "anonymous"
push_to_hub = False
slugged_lora_name = lora_name.replace(" ", "_").lower()
# Load base config
config = {
"config": {
"name": slugged_lora_name,
"process": [
{
"model": {
"low_vram": low_vram,
"is_flux": True,
"quantize": True,
"name_or_path": "black-forest-labs/FLUX.1-dev"
},
"network": {
"linear": rank,
"linear_alpha": rank,
"type": "lora"
},
"train": {
"steps": steps,
"lr": lr,
"skip_first_sample": True,
"batch_size": 1,
"dtype": "bf16",
"gradient_accumulation_steps": 1,
"gradient_checkpointing": True,
"noise_scheduler": "flowmatch",
"optimizer": "adamw8bit",
"ema_config": {
"use_ema": True,
"ema_decay": 0.99
}
},
"datasets": [
{"folder_path": dataset_folder}
],
"save": {
"dtype": "float16",
"save_every": 10000,
"push_to_hub": push_to_hub,
"hf_repo_id": f"{username}/{slugged_lora_name}",
"hf_private": True,
"max_step_saves_to_keep": 4
},
"sample": {
"guidance_scale": 3.5,
"sample_every": steps,
"sample_steps": 28,
"width": 1024,
"height": 1024,
"walk_seed": True,
"seed": 42,
"sampler": "flowmatch",
"prompts": [p for p in [sample_1, sample_2, sample_3] if p]
},
"trigger_word": concept_sentence
}
]
}
}
# Apply advanced YAML overrides if any
if use_more_advanced_options and more_advanced_options:
advanced_config = yaml.safe_load(more_advanced_options)
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], advanced_config)
# Save YAML config
os.makedirs("tmp_configs", exist_ok=True)
config_path = f"tmp_configs/{uuid.uuid4()}_{slugged_lora_name}.yaml"
with open(config_path, "w") as f:
yaml.dump(config, f)
# Simulate training
print(f"[INFO] Starting training with config: {config_path}")
print(json.dumps(config, indent=2))
return f"Training started successfully with config: {config_path}"
# ========== MAIN ENDPOINT ==========
@app.post("/train-from-hf")
def auto_run_lora_from_repo():
try:
local_dir = Path(f"/tmp/{LORA_NAME}-{uuid.uuid4()}")
os.makedirs(local_dir, exist_ok=True)
hf_hub_download(
repo_id=REPO_ID,
repo_type="dataset",
subfolder=FOLDER_IN_REPO,
local_dir=local_dir,
local_dir_use_symlinks=False,
force_download=False,
etag_timeout=10,
allow_patterns=["*.jpg", "*.png", "*.jpeg"],
)
image_dir = local_dir / FOLDER_IN_REPO
image_paths = list(image_dir.rglob("*.jpg")) + list(image_dir.rglob("*.jpeg")) + list(image_dir.rglob("*.png"))
if not image_paths:
return JSONResponse(status_code=400, content={"error": "No images found in the HF repo folder."})
captions = [
f"Autogenerated caption for {img.stem} in the {CONCEPT_SENTENCE} [trigger]" for img in image_paths
]
dataset_path = create_dataset(image_paths, *captions)
result = start_training(
lora_name=LORA_NAME,
concept_sentence=CONCEPT_SENTENCE,
steps=1000,
lr=4e-4,
rank=16,
model_to_train="dev",
low_vram=True,
dataset_folder=dataset_path,
sample_1=f"A stylized portrait using {CONCEPT_SENTENCE}",
sample_2=f"A cat in the {CONCEPT_SENTENCE}",
sample_3=f"A selfie processed in {CONCEPT_SENTENCE}",
use_more_advanced_options=True,
more_advanced_options="""
training:
seed: 42
precision: bf16
batch_size: 2
augmentation:
flip: true
color_jitter: true
"""
)
return {"message": result}
except Exception as e:
return JSONResponse(status_code=500, content={"error": str(e)})
# ========== FASTAPI RUNNER ==========
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)