Spaces:
Running
Running
| import os | |
| from typing import TYPE_CHECKING, List | |
| import torch | |
| import torchvision | |
| import yaml | |
| from toolkit import train_tools | |
| from toolkit.config_modules import GenerateImageConfig, ModelConfig | |
| from PIL import Image | |
| from toolkit.models.base_model import BaseModel | |
| from diffusers import FluxTransformer2DModel, AutoencoderKL | |
| from toolkit.basic import flush | |
| from toolkit.prompt_utils import PromptEmbeds | |
| from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler | |
| from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance | |
| from toolkit.dequantize import patch_dequantization_on_save | |
| from toolkit.accelerator import get_accelerator, unwrap_model | |
| from optimum.quanto import freeze, QTensor | |
| from toolkit.util.mask import generate_random_mask, random_dialate_mask | |
| from toolkit.util.quantize import quantize, get_qtype | |
| from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer | |
| from .pipeline import Flex2Pipeline | |
| from einops import rearrange, repeat | |
| import random | |
| import torch.nn.functional as F | |
| if TYPE_CHECKING: | |
| from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": 0.5, | |
| "max_image_seq_len": 4096, | |
| "max_shift": 1.15, | |
| "num_train_timesteps": 1000, | |
| "shift": 3.0, | |
| "use_dynamic_shifting": True | |
| } | |
| def random_blur(img, min_kernel_size=3, max_kernel_size=23, p=0.5): | |
| if random.random() < p: | |
| kernel_size = random.randint(min_kernel_size, max_kernel_size) | |
| # make sure it is odd | |
| if kernel_size % 2 == 0: | |
| kernel_size += 1 | |
| img = torchvision.transforms.functional.gaussian_blur(img, kernel_size=kernel_size) | |
| return img | |
| class Flex2(BaseModel): | |
| arch = "flex2" | |
| def __init__( | |
| self, | |
| device, | |
| model_config: ModelConfig, | |
| dtype='bf16', | |
| custom_pipeline=None, | |
| noise_scheduler=None, | |
| **kwargs | |
| ): | |
| super().__init__( | |
| device, | |
| model_config, | |
| dtype, | |
| custom_pipeline, | |
| noise_scheduler, | |
| **kwargs | |
| ) | |
| self.is_flow_matching = True | |
| self.is_transformer = True | |
| self.target_lora_modules = ['FluxTransformer2DModel'] | |
| # for training, pass these as kwargs | |
| self.invert_inpaint_mask_chance = model_config.model_kwargs.get('invert_inpaint_mask_chance', 0.0) | |
| self.inpaint_dropout = model_config.model_kwargs.get('inpaint_dropout', 0.0) | |
| self.control_dropout = model_config.model_kwargs.get('control_dropout', 0.0) | |
| self.inpaint_random_chance = model_config.model_kwargs.get('inpaint_random_chance', 0.0) | |
| self.random_blur_mask = model_config.model_kwargs.get('random_blur_mask', False) | |
| self.random_dialate_mask = model_config.model_kwargs.get('random_dialate_mask', False) | |
| self.do_random_inpainting = model_config.model_kwargs.get('do_random_inpainting', False) | |
| # static method to get the noise scheduler | |
| def get_train_scheduler(): | |
| return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) | |
| def get_bucket_divisibility(self): | |
| return 16 | |
| def load_model(self): | |
| dtype = self.torch_dtype | |
| self.print_and_status_update("Loading Flux2 model") | |
| # will be updated if we detect a existing checkpoint in training folder | |
| model_path = self.model_config.name_or_path | |
| # this is the original path put in the model directory | |
| # it is here because for finetuning we only save the transformer usually | |
| # so we need this for the VAE, te, etc | |
| base_model_path = self.model_config.name_or_path_original | |
| transformer_path = model_path | |
| transformer_subfolder = 'transformer' | |
| if os.path.exists(transformer_path): | |
| transformer_subfolder = None | |
| transformer_path = os.path.join(transformer_path, 'transformer') | |
| # check if the path is a full checkpoint. | |
| te_folder_path = os.path.join(model_path, 'text_encoder') | |
| # if we have the te, this folder is a full checkpoint, use it as the base | |
| if os.path.exists(te_folder_path): | |
| base_model_path = model_path | |
| self.print_and_status_update("Loading transformer") | |
| transformer = FluxTransformer2DModel.from_pretrained( | |
| transformer_path, | |
| subfolder=transformer_subfolder, | |
| torch_dtype=dtype, | |
| ) | |
| transformer.to(self.quantize_device, dtype=dtype) | |
| if self.model_config.quantize: | |
| # patch the state dict method | |
| patch_dequantization_on_save(transformer) | |
| quantization_type = get_qtype(self.model_config.qtype) | |
| self.print_and_status_update("Quantizing transformer") | |
| quantize(transformer, weights=quantization_type, | |
| **self.model_config.quantize_kwargs) | |
| freeze(transformer) | |
| transformer.to(self.device_torch) | |
| else: | |
| transformer.to(self.device_torch, dtype=dtype) | |
| flush() | |
| self.print_and_status_update("Loading T5") | |
| tokenizer_2 = T5TokenizerFast.from_pretrained( | |
| base_model_path, subfolder="tokenizer_2", torch_dtype=dtype | |
| ) | |
| text_encoder_2 = T5EncoderModel.from_pretrained( | |
| base_model_path, subfolder="text_encoder_2", torch_dtype=dtype | |
| ) | |
| text_encoder_2.to(self.device_torch, dtype=dtype) | |
| flush() | |
| if self.model_config.quantize_te: | |
| self.print_and_status_update("Quantizing T5") | |
| quantize(text_encoder_2, weights=get_qtype( | |
| self.model_config.qtype)) | |
| freeze(text_encoder_2) | |
| flush() | |
| self.print_and_status_update("Loading CLIP") | |
| text_encoder = CLIPTextModel.from_pretrained( | |
| base_model_path, subfolder="text_encoder", torch_dtype=dtype) | |
| tokenizer = CLIPTokenizer.from_pretrained( | |
| base_model_path, subfolder="tokenizer", torch_dtype=dtype) | |
| text_encoder.to(self.device_torch, dtype=dtype) | |
| self.print_and_status_update("Loading VAE") | |
| vae = AutoencoderKL.from_pretrained( | |
| base_model_path, subfolder="vae", torch_dtype=dtype) | |
| self.noise_scheduler = Flex2.get_train_scheduler() | |
| self.print_and_status_update("Making pipe") | |
| pipe: Flex2Pipeline = Flex2Pipeline( | |
| scheduler=self.noise_scheduler, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| text_encoder_2=None, | |
| tokenizer_2=tokenizer_2, | |
| vae=vae, | |
| transformer=None, | |
| ) | |
| # for quantization, it works best to do these after making the pipe | |
| pipe.text_encoder_2 = text_encoder_2 | |
| pipe.transformer = transformer | |
| self.print_and_status_update("Preparing Model") | |
| text_encoder = [pipe.text_encoder, pipe.text_encoder_2] | |
| tokenizer = [pipe.tokenizer, pipe.tokenizer_2] | |
| pipe.transformer = pipe.transformer.to(self.device_torch) | |
| flush() | |
| # just to make sure everything is on the right device and dtype | |
| text_encoder[0].to(self.device_torch) | |
| text_encoder[0].requires_grad_(False) | |
| text_encoder[0].eval() | |
| text_encoder[1].to(self.device_torch) | |
| text_encoder[1].requires_grad_(False) | |
| text_encoder[1].eval() | |
| pipe.transformer = pipe.transformer.to(self.device_torch) | |
| flush() | |
| # save it to the model class | |
| self.vae = vae | |
| self.text_encoder = text_encoder # list of text encoders | |
| self.tokenizer = tokenizer # list of tokenizers | |
| self.model = pipe.transformer | |
| self.pipeline = pipe | |
| self.print_and_status_update("Model Loaded") | |
| def get_generation_pipeline(self): | |
| scheduler = Flex2.get_train_scheduler() | |
| pipeline: Flex2Pipeline = Flex2Pipeline( | |
| scheduler=scheduler, | |
| text_encoder=unwrap_model(self.text_encoder[0]), | |
| tokenizer=self.tokenizer[0], | |
| text_encoder_2=unwrap_model(self.text_encoder[1]), | |
| tokenizer_2=self.tokenizer[1], | |
| vae=unwrap_model(self.vae), | |
| transformer=unwrap_model(self.transformer) | |
| ) | |
| pipeline = pipeline.to(self.device_torch) | |
| return pipeline | |
| def generate_single_image( | |
| self, | |
| pipeline: Flex2Pipeline, | |
| gen_config: GenerateImageConfig, | |
| conditional_embeds: PromptEmbeds, | |
| unconditional_embeds: PromptEmbeds, | |
| generator: torch.Generator, | |
| extra: dict, | |
| ): | |
| if gen_config.ctrl_img is None: | |
| control_img = None | |
| else: | |
| control_img = Image.open(gen_config.ctrl_img) | |
| if ".inpaint." not in gen_config.ctrl_img: | |
| control_img = control_img.convert("RGB") | |
| else: | |
| # make sure it has an alpha | |
| if control_img.mode != "RGBA": | |
| raise ValueError("Inpainting images must have an alpha channel") | |
| img = pipeline( | |
| prompt_embeds=conditional_embeds.text_embeds, | |
| pooled_prompt_embeds=conditional_embeds.pooled_embeds, | |
| height=gen_config.height, | |
| width=gen_config.width, | |
| num_inference_steps=gen_config.num_inference_steps, | |
| guidance_scale=gen_config.guidance_scale, | |
| latents=gen_config.latents, | |
| generator=generator, | |
| control_image=control_img, | |
| control_image_idx=gen_config.ctrl_idx, | |
| **extra | |
| ).images[0] | |
| return img | |
| def get_noise_prediction( | |
| self, | |
| latent_model_input: torch.Tensor, | |
| timestep: torch.Tensor, # 0 to 1000 scale | |
| text_embeddings: PromptEmbeds, | |
| guidance_embedding_scale: float, | |
| bypass_guidance_embedding: bool, | |
| **kwargs | |
| ): | |
| with torch.no_grad(): | |
| bs, c, h, w = latent_model_input.shape | |
| latent_model_input_packed = rearrange( | |
| latent_model_input, | |
| "b c (h ph) (w pw) -> b (h w) (c ph pw)", | |
| ph=2, | |
| pw=2 | |
| ) | |
| img_ids = torch.zeros(h // 2, w // 2, 3) | |
| img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
| img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
| img_ids = repeat(img_ids, "h w c -> b (h w) c", | |
| b=bs).to(self.device_torch) | |
| txt_ids = torch.zeros( | |
| bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch) | |
| # # handle guidance | |
| if self.unet_unwrapped.config.guidance_embeds: | |
| if isinstance(guidance_embedding_scale, list): | |
| guidance = torch.tensor( | |
| guidance_embedding_scale, device=self.device_torch) | |
| else: | |
| guidance = torch.tensor( | |
| [guidance_embedding_scale], device=self.device_torch) | |
| guidance = guidance.expand(latent_model_input.shape[0]) | |
| else: | |
| guidance = None | |
| if bypass_guidance_embedding: | |
| bypass_flux_guidance(self.unet) | |
| cast_dtype = self.unet.dtype | |
| # changes from orig implementation | |
| if txt_ids.ndim == 3: | |
| txt_ids = txt_ids[0] | |
| if img_ids.ndim == 3: | |
| img_ids = img_ids[0] | |
| noise_pred = self.unet( | |
| hidden_states=latent_model_input_packed.to( | |
| self.device_torch, cast_dtype), | |
| timestep=timestep / 1000, | |
| encoder_hidden_states=text_embeddings.text_embeds.to( | |
| self.device_torch, cast_dtype), | |
| pooled_projections=text_embeddings.pooled_embeds.to( | |
| self.device_torch, cast_dtype), | |
| txt_ids=txt_ids, | |
| img_ids=img_ids, | |
| guidance=guidance, | |
| return_dict=False, | |
| **kwargs, | |
| )[0] | |
| if isinstance(noise_pred, QTensor): | |
| noise_pred = noise_pred.dequantize() | |
| noise_pred = rearrange( | |
| noise_pred, | |
| "b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
| h=latent_model_input.shape[2] // 2, | |
| w=latent_model_input.shape[3] // 2, | |
| ph=2, | |
| pw=2, | |
| c=self.vae.config.latent_channels | |
| ) | |
| if bypass_guidance_embedding: | |
| restore_flux_guidance(self.unet) | |
| return noise_pred | |
| def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: | |
| if self.pipeline.text_encoder.device != self.device_torch: | |
| self.pipeline.text_encoder.to(self.device_torch) | |
| prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux( | |
| self.tokenizer, | |
| self.text_encoder, | |
| prompt, | |
| max_length=512, | |
| ) | |
| pe = PromptEmbeds( | |
| prompt_embeds | |
| ) | |
| pe.pooled_embeds = pooled_prompt_embeds | |
| return pe | |
| def get_model_has_grad(self): | |
| # return from a weight if it has grad | |
| return self.model.proj_out.weight.requires_grad | |
| def get_te_has_grad(self): | |
| # return from a weight if it has grad | |
| return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad | |
| def save_model(self, output_path, meta, save_dtype): | |
| # only save the unet | |
| transformer: FluxTransformer2DModel = unwrap_model(self.model) | |
| transformer.save_pretrained( | |
| save_directory=os.path.join(output_path, 'transformer'), | |
| safe_serialization=True, | |
| ) | |
| meta_path = os.path.join(output_path, 'aitk_meta.yaml') | |
| with open(meta_path, 'w') as f: | |
| yaml.dump(meta, f) | |
| def get_loss_target(self, *args, **kwargs): | |
| noise = kwargs.get('noise') | |
| batch = kwargs.get('batch') | |
| return (noise - batch.latents).detach() | |
| def condition_noisy_latents(self, latents: torch.Tensor, batch:'DataLoaderBatchDTO'): | |
| with torch.no_grad(): | |
| # inpainting input is 0-1 (bs, 4, h, w) on batch.inpaint_tensor | |
| # 4th channel is the mask with 1 being keep area and 0 being area to inpaint. | |
| # todo handle dropout on a batch item level, this frops out the entire batch | |
| do_dropout = random.random() < self.inpaint_dropout if self.inpaint_dropout > 0.0 else False | |
| # do random mask if we dont have one | |
| inpaint_tensor = batch.inpaint_tensor | |
| if inpaint_tensor is None and batch.mask_tensor is not None: | |
| # we have a mask tensor, use it | |
| inpaint_tensor = batch.mask_tensor | |
| if self.inpaint_random_chance > 0.0: | |
| do_random = random.random() < self.inpaint_random_chance | |
| if do_random: | |
| # force a random tensor | |
| inpaint_tensor = None | |
| if inpaint_tensor is None and not do_dropout and self.do_random_inpainting: | |
| # generate a random one since we dont have one | |
| # this will make random blobs, invert the blobs for now as we normanlly inpaint the alpha | |
| inpaint_tensor = 1 - generate_random_mask( | |
| batch_size=latents.shape[0], | |
| height=latents.shape[2], | |
| width=latents.shape[3], | |
| device=latents.device, | |
| ).to(latents.device, latents.dtype) | |
| if inpaint_tensor is not None and not do_dropout: | |
| if inpaint_tensor.shape[1] == 4: | |
| # get just the mask | |
| inpainting_tensor_mask = inpaint_tensor[:, 3:4, :, :].to(latents.device, dtype=latents.dtype) | |
| elif inpaint_tensor.shape[1] == 3: | |
| # rgb mask. Just get one channel | |
| inpainting_tensor_mask = inpaint_tensor[:, 0:1, :, :].to(latents.device, dtype=latents.dtype) | |
| # mask is 0-1 with 1 being inpaint area, we need to invert it for now, it is re inverted later | |
| inpaint_tensor = 1 - inpaint_tensor | |
| else: | |
| inpainting_tensor_mask = inpaint_tensor | |
| # # use our batch latents so we cna avoid encoding again | |
| inpainting_latent = batch.latents | |
| # resize the mask to match the new encoded size | |
| inpainting_tensor_mask = F.interpolate(inpainting_tensor_mask, size=(inpainting_latent.shape[2], inpainting_latent.shape[3]), mode='bilinear') | |
| inpainting_tensor_mask = inpainting_tensor_mask.to(latents.device, latents.dtype) | |
| if self.random_blur_mask: | |
| # blur the mask | |
| # Give it a channel dim of 1 | |
| if len(inpainting_tensor_mask.shape) == 3: | |
| # if it is 3d, add a channel dim | |
| inpainting_tensor_mask = inpainting_tensor_mask.unsqueeze(1) | |
| # we are at latent size, so keep kernel smaller | |
| inpainting_tensor_mask = random_blur( | |
| inpainting_tensor_mask, | |
| min_kernel_size=3, | |
| max_kernel_size=8, | |
| p=0.5 | |
| ) | |
| do_mask_invert = False | |
| if self.invert_inpaint_mask_chance > 0.0: | |
| do_mask_invert = random.random() < self.invert_inpaint_mask_chance | |
| if do_mask_invert: | |
| # invert the mask | |
| inpainting_tensor_mask = 1 - inpainting_tensor_mask | |
| # mask out the inpainting area, it is currently 0 for inpaint area, and 1 for keep area | |
| # we are zeroing our the latents in the inpaint area not on the pixel space. | |
| inpainting_latent = inpainting_latent * inpainting_tensor_mask | |
| # do the random dialation after the mask is applied so it does not match perfectly. | |
| # this will make the model learn to prevent weird edges | |
| if self.random_dialate_mask: | |
| inpainting_tensor_mask = random_dialate_mask( | |
| inpainting_tensor_mask, | |
| max_percent=0.05 | |
| ) | |
| # mask needs to be 1 for inpaint area and 0 for area to leave alone. So flip it. | |
| inpainting_tensor_mask = 1 - inpainting_tensor_mask | |
| # leave the mask as 0-1 and concat on channel of latents | |
| inpainting_latent = torch.cat((inpainting_latent, inpainting_tensor_mask), dim=1) | |
| else: | |
| # we have iinpainting but didnt get a control. or we are doing a dropout | |
| # the input needs to be all zeros for the latents and all 1s for the mask | |
| inpainting_latent = torch.zeros_like(latents) | |
| # add ones for the mask since we are technically inpainting everything | |
| inpainting_latent = torch.cat((inpainting_latent, torch.ones_like(inpainting_latent[:, :1, :, :])), dim=1) | |
| control_tensor = batch.control_tensor | |
| if control_tensor is None: | |
| # concat random normal noise onto the latents | |
| # check dimension, this is before they are rearranged | |
| # it is latent_model_input = torch.cat([latents, control_image], dim=2) after rearranging | |
| ctrl = torch.zeros( | |
| latents.shape[0], # bs | |
| latents.shape[1], | |
| latents.shape[2], | |
| latents.shape[3], | |
| device=latents.device, | |
| dtype=latents.dtype | |
| ) | |
| # inpainting always comes first | |
| ctrl = torch.cat((inpainting_latent, ctrl), dim=1) | |
| latents = torch.cat((latents, ctrl), dim=1) | |
| return latents.detach() | |
| # if we have multiple control tensors, they come in like [bs, num_control_images, ch, h, w] | |
| # if we have 1, it comes in like [bs, ch, h, w] | |
| # stack out control tensors to be [bs, ch * num_control_images, h, w] | |
| control_tensor_list = [] | |
| if len(control_tensor.shape) == 4: | |
| control_tensor_list.append(control_tensor) | |
| else: | |
| num_control_images = control_tensor.shape[1] | |
| # reshape | |
| control_tensor = control_tensor.view( | |
| control_tensor.shape[0], | |
| control_tensor.shape[1] * control_tensor.shape[2], | |
| control_tensor.shape[3], | |
| control_tensor.shape[4] | |
| ) | |
| control_tensor_list = control_tensor.chunk(num_control_images, dim=1) | |
| do_dropout = random.random() < self.control_dropout if self.control_dropout > 0.0 else False | |
| if do_dropout: | |
| # dropout with zeros | |
| control_latent = torch.zeros_like(batch.latents) | |
| else: | |
| # we only have one control so we randomly pick from this list | |
| control_tensor = random.choice(control_tensor_list) | |
| # it is 0-1 need to convert to -1 to 1 | |
| control_tensor = control_tensor * 2 - 1 | |
| control_tensor = control_tensor.to(self.vae_device_torch, dtype=self.torch_dtype) | |
| # if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it | |
| if control_tensor.shape[2] != batch.tensor.shape[2] or control_tensor.shape[3] != batch.tensor.shape[3]: | |
| control_tensor = F.interpolate(control_tensor, size=(batch.tensor.shape[2], batch.tensor.shape[3]), mode='bilinear') | |
| # encode it | |
| control_latent = self.encode_images(control_tensor).to(latents.device, latents.dtype) | |
| # inpainting always comes first | |
| control_latent = torch.cat((inpainting_latent, control_latent), dim=1) | |
| # concat it onto the latents | |
| latents = torch.cat((latents, control_latent), dim=1) | |
| return latents.detach() |