Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	| from typing import Union, List, Optional, Dict, Any, Callable | |
| import numpy as np | |
| import torch | |
| from diffusers import FluxPipeline | |
| from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps | |
| from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput | |
| from diffusers.utils import is_torch_xla_available | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| class ChromaPipeline(FluxPipeline): | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 7.0, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, | |
| List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| prompt_attn_mask: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_attn_mask: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[ | |
| int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| ): | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| if isinstance(device, str): | |
| device = torch.device(device) | |
| text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=torch.bfloat16) | |
| if guidance_scale > 1.00001: | |
| negative_text_ids = torch.zeros(batch_size, negative_prompt_embeds.shape[1], 3).to(device=device, dtype=torch.bfloat16) | |
| # 4. Prepare latent variables | |
| num_channels_latents = 64 // 4 | |
| latents, latent_image_ids = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # extend img ids to match batch size | |
| latent_image_ids = latent_image_ids.unsqueeze(0) | |
| latent_image_ids = torch.cat([latent_image_ids] * batch_size, dim=0) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.base_image_seq_len, | |
| self.scheduler.config.max_image_seq_len, | |
| self.scheduler.config.base_shift, | |
| self.scheduler.config.max_shift, | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max( | |
| len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| guidance = torch.full([1], 0, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| # 6. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| # handle guidance | |
| noise_pred_text = self.transformer( | |
| img=latents, | |
| img_ids=latent_image_ids, | |
| txt=prompt_embeds, | |
| txt_ids=text_ids, | |
| txt_mask=prompt_attn_mask, # todo add this | |
| timesteps=timestep / 1000, | |
| guidance=guidance | |
| ) | |
| if guidance_scale > 1.00001: | |
| noise_pred_uncond = self.transformer( | |
| img=latents, | |
| img_ids=latent_image_ids, | |
| txt=negative_prompt_embeds, | |
| txt_ids=negative_text_ids, | |
| txt_mask=negative_prompt_attn_mask, # todo add this | |
| timesteps=timestep / 1000, | |
| guidance=guidance | |
| ) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * \ | |
| (noise_pred_text - noise_pred_uncond) | |
| else: | |
| noise_pred = noise_pred_text | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, return_dict=False)[0] | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end( | |
| self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop( | |
| "prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents( | |
| latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + \ | |
| self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess( | |
| image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(images=image) | |
