Spaces:
Running
Running
import os | |
import uuid | |
import gradio as gr | |
from pathlib import Path | |
from huggingface_hub import hf_hub_download | |
from your_existing_training_file import create_dataset, start_training # <-- update this import as needed | |
# Constants | |
REPO_ID = "rahul7star/ohamlab" | |
FOLDER_IN_REPO = "filter-demo/upload_20250708_041329_9c5c81" | |
CONCEPT_SENTENCE = "ohamlab style" | |
LORA_NAME = "ohami_filter_autorun" | |
def auto_run_lora_from_repo(): | |
local_dir = Path(f"/tmp/{LORA_NAME}-{uuid.uuid4()}") | |
os.makedirs(local_dir, exist_ok=True) | |
# Download at least one file to force HF to pull full folder | |
hf_hub_download( | |
repo_id=REPO_ID, | |
repo_type="dataset", | |
subfolder=FOLDER_IN_REPO, | |
local_dir=local_dir, | |
local_dir_use_symlinks=False, | |
force_download=False, | |
etag_timeout=10, | |
allow_patterns=["*.jpg", "*.png", "*.jpeg"], | |
) | |
image_dir = local_dir / FOLDER_IN_REPO | |
image_paths = list(image_dir.rglob("*.jpg")) + list(image_dir.rglob("*.jpeg")) + list(image_dir.rglob("*.png")) | |
if not image_paths: | |
raise gr.Error("No images found in the Hugging Face repo folder.") | |
# Captions | |
captions = [ | |
f"Generated image caption for {img.stem} in the {CONCEPT_SENTENCE} [trigger]" for img in image_paths | |
] | |
# Create dataset | |
dataset_path = create_dataset(image_paths, *captions) | |
# Static prompts | |
sample_1 = f"A stylized portrait using {CONCEPT_SENTENCE}" | |
sample_2 = f"A cat in the {CONCEPT_SENTENCE}" | |
sample_3 = f"A selfie processed in {CONCEPT_SENTENCE}" | |
# Config | |
steps = 1000 | |
lr = 4e-4 | |
rank = 16 | |
model_to_train = "dev" | |
low_vram = True | |
use_more_advanced_options = True | |
more_advanced_options = """\ | |
training: | |
seed: 42 | |
precision: bf16 | |
batch_size: 2 | |
augmentation: | |
flip: true | |
color_jitter: true | |
""" | |
# Train | |
return start_training( | |
lora_name=LORA_NAME, | |
concept_sentence=CONCEPT_SENTENCE, | |
steps=steps, | |
lr=lr, | |
rank=rank, | |
model_to_train=model_to_train, | |
low_vram=low_vram, | |
dataset_folder=dataset_path, | |
sample_1=sample_1, | |
sample_2=sample_2, | |
sample_3=sample_3, | |
use_more_advanced_options=use_more_advanced_options, | |
more_advanced_options=more_advanced_options | |
) | |
# Gradio UI | |
with gr.Blocks(title="LoRA Autorun from HF Repo") as demo: | |
gr.Markdown("# 🚀 Auto Run LoRA from Hugging Face Repo") | |
output = gr.Textbox(label="Training Status", lines=3) | |
run_button = gr.Button("Run Training from HF Repo") | |
run_button.click(fn=auto_run_lora_from_repo, outputs=output) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |