Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	File size: 24,606 Bytes
			
			| fcc02a2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 | from functools import partial
import inspect
import weakref
import torch
from typing import TYPE_CHECKING, Any, Dict, Optional, Union
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from toolkit.lora_special import LoRASpecialNetwork
from diffusers import WanTransformer3DModel
from transformers import SiglipImageProcessor, SiglipVisionModel, CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers.models.attention_processor import Attention
from diffusers.models.transformers.transformer_wan import WanImageEmbedding, WanTimeTextImageEmbedding
from toolkit.util.shuffle import shuffle_tensor_along_axis
import torch.nn.functional as F
if TYPE_CHECKING:
    from toolkit.models.base_model import BaseModel
    from toolkit.config_modules import AdapterConfig, TrainConfig, ModelConfig
    from toolkit.custom_adapter import CustomAdapter
    
class FrameEmbedder(torch.nn.Module):
    def __init__(
        self,
        adapter: 'I2VAdapter',
        orig_layer: torch.nn.Conv3d,
        in_channels=20, # wan is 16 normally, and 36 with i2v so 20 new channels
    ):
        super().__init__()
        # goes through a conv patch embedding first and is then flattened
        # hidden_states = self.patch_embedding(hidden_states)
        # hidden_states = hidden_states.flatten(2).transpose(1, 2)
        
        inner_dim = orig_layer.out_channels
        patch_size = adapter.sd_ref().model.config.patch_size
        
        self.patch_embedding = torch.nn.Conv3d(in_channels, inner_dim, kernel_size=patch_size, stride=patch_size)
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.orig_layer_ref: weakref.ref = weakref.ref(orig_layer)
    @classmethod
    def from_model(
        cls,
        model: WanTransformer3DModel,
        adapter: 'I2VAdapter',
    ):
        if model.__class__.__name__ == 'WanTransformer3DModel':
            new_channels = 20 # wan is 16 normally, and 36 with i2v so 20 new channels
            orig_patch_embedding: torch.nn.Conv3d = model.patch_embedding
            img_embedder = cls(
                adapter,
                orig_layer=orig_patch_embedding,
                in_channels=new_channels,
            )
            # hijack the forward method
            orig_patch_embedding._orig_i2v_adapter_forward = orig_patch_embedding.forward
            orig_patch_embedding.forward = img_embedder.forward
            # update the config of the transformer, only needed when merged in
            # model.config.in_channels = model.config.in_channels + new_channels
            # model.config["in_channels"] = model.config.in_channels + new_channels
            return img_embedder
        else:
            raise ValueError("Model not supported")
    @property
    def is_active(self):
        return self.adapter_ref().is_active
    def forward(self, x):
        if not self.is_active:
            # make sure lora is not active
            if self.adapter_ref().control_lora is not None:
                self.adapter_ref().control_lora.is_active = False
            
            if x.shape[1] > self.orig_layer_ref().in_channels:
                # we have i2v, so we need to remove the extra channels
                x = x[:, :self.orig_layer_ref().in_channels, :, :, :]
            return self.orig_layer_ref()._orig_i2v_adapter_forward(x)
        # make sure lora is active
        if self.adapter_ref().control_lora is not None:
            self.adapter_ref().control_lora.is_active = True
            
        # x is arranged channels cat(orig_input = 16, temporal_conditioning_mask = 4, encoded_first_frame=16)
        # (16 + 4 + 16) = 36 channels
        # (batch_size, 36, num_frames, latent_height, latent_width)
        orig_device = x.device
        orig_dtype = x.dtype
        
        orig_in = x[:, :16, :, :, :]
        orig_out = self.orig_layer_ref()._orig_i2v_adapter_forward(orig_in)
        
        # remove original stuff
        x = x[:, 16:, :, :, :]
        x = x.to(self.patch_embedding.weight.device, dtype=self.patch_embedding.weight.dtype)
        x = self.patch_embedding(x)
        
        x = x.to(orig_device, dtype=orig_dtype)
        
        # add the original out
        x = x + orig_out
        return x
def deactivatable_forward(
    self: 'Attention',
    *args,
    **kwargs
):
    if self._attn_hog_ref() is not None and self._attn_hog_ref().is_active:
        self.added_kv_proj_dim = None
        self.add_k_proj = self._add_k_proj
        self.add_v_proj = self._add_v_proj
        self.norm_added_q = self._norm_added_q
        self.norm_added_k = self._norm_added_k
    else:
        self.added_kv_proj_dim = self._attn_hog_ref().added_kv_proj_dim
        self.add_k_proj = None
        self.add_v_proj = None
        self.norm_added_q = None
        self.norm_added_k = None
    return self._orig_forward(*args, **kwargs)
class AttentionHog(torch.nn.Module):
    def __init__(
        self,
        added_kv_proj_dim: int,
        adapter: 'I2VAdapter',
        attn_layer: Attention,
        model: 'WanTransformer3DModel',
    ):
        super().__init__()
        # To prevent circular import.
        from diffusers.models.normalization import FP32LayerNorm, LpNorm, RMSNorm
        self.added_kv_proj_dim = added_kv_proj_dim
        self.attn_layer_ref: weakref.ref = weakref.ref(attn_layer)
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.model_ref: weakref.ref = weakref.ref(model)
        qk_norm = model.config.qk_norm
        
        # layers
        self.add_k_proj = torch.nn.Linear(
            added_kv_proj_dim,
            attn_layer.inner_kv_dim,
            bias=attn_layer.added_proj_bias
        )
        self.add_k_proj.weight.data = self.add_k_proj.weight.data * 0.001
        self.add_v_proj = torch.nn.Linear(
            added_kv_proj_dim,
            attn_layer.inner_kv_dim,
            bias=attn_layer.added_proj_bias
        )
        self.add_v_proj.weight.data = self.add_v_proj.weight.data * 0.001
        # do qk norm. It isnt stored in the class, but we can infer it from the attn layer
        self.norm_added_q = None
        self.norm_added_k = None
        if attn_layer.norm_q is not None:
            eps: float = 1e-5
            if qk_norm == "layer_norm":
                self.norm_added_q = torch.nn.LayerNorm(
                    attn_layer.norm_q.normalized_shape, eps=eps, elementwise_affine=attn_layer.norm_q.elementwise_affine)
                self.norm_added_k = torch.nn.LayerNorm(
                    attn_layer.norm_k.normalized_shape, eps=eps, elementwise_affine=attn_layer.norm_k.elementwise_affine)
            elif qk_norm == "fp32_layer_norm":
                self.norm_added_q = FP32LayerNorm(
                    attn_layer.norm_q.normalized_shape, elementwise_affine=False, bias=False, eps=eps)
                self.norm_added_k = FP32LayerNorm(
                    attn_layer.norm_k.normalized_shape, elementwise_affine=False, bias=False, eps=eps)
            elif qk_norm == "rms_norm":
                self.norm_added_q = RMSNorm(attn_layer.norm_q.dim, eps=eps)
                self.norm_added_k = RMSNorm(attn_layer.norm_k.dim, eps=eps)
            elif qk_norm == "rms_norm_across_heads":
                # Wanx applies qk norm across all heads
                self.norm_added_q = RMSNorm(attn_layer.norm_q.dim, eps=eps)
                self.norm_added_k = RMSNorm(attn_layer.norm_k.dim, eps=eps)
            else:
                raise ValueError(
                    f"unknown qk_norm: {qk_norm}. Should be one of `None,'layer_norm','fp32_layer_norm','rms_norm'`"
                )
        # add these to the attn later in a way they can be deactivated
        attn_layer._add_k_proj = self.add_k_proj
        attn_layer._add_v_proj = self.add_v_proj
        attn_layer._norm_added_q = self.norm_added_q
        attn_layer._norm_added_k = self.norm_added_k
        # make it deactivateable
        attn_layer._attn_hog_ref = weakref.ref(self)
        attn_layer._orig_forward = attn_layer.forward
        attn_layer.forward = partial(deactivatable_forward, attn_layer)
    def forward(self, *args, **kwargs):
        if not self.adapter_ref().is_active:
            return self.attn_module(*args, **kwargs)
        # TODO implement this
        raise NotImplementedError("Attention hog not implemented")
    def is_active(self):
        return self.adapter_ref().is_active
def new_wan_forward(
    self: WanTransformer3DModel,
    hidden_states: torch.Tensor,
    timestep: torch.LongTensor,
    encoder_hidden_states: torch.Tensor,
    encoder_hidden_states_image: Optional[torch.Tensor] = None,
    return_dict: bool = True,
    attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
    # prevent circular import
    from toolkit.models.wan21.wan_utils import add_first_frame_conditioning
    adapter:'I2VAdapter' = self._i2v_adapter_ref()
    
    if adapter.is_active:
        # activate the condition embedder
        self.condition_embedder.image_embedder = adapter.image_embedder
        
        # for wan they are putting the image emcoder embeds on the unconditional
        # this needs to be fixed as that wont work. For now, we will will use the embeds we have in order
        # we cache an conditional and an unconditional embed. On sampling, it samples conditional first,
        # then unconditional. So we just need to keep track of which one we are using. This is a horrible hack
        # TODO find a not stupid way to do this. 
        
        if adapter.adapter_ref().is_sampling:
            if not hasattr(self, '_do_unconditional'):
                # set it to true so we alternate to false immediatly
                self._do_unconditional = True
            
            # alternate it
            self._do_unconditional = not self._do_unconditional
            if self._do_unconditional:
                # slightly reduce strength of conditional for the unconditional
                # encoder_hidden_states_image = adapter.adapter_ref().conditional_embeds * 0.5
                # shuffle the embedding tokens so we still have all the information, but it is scrambled
                # this will prevent things like color from being cfg overweights, but still sharpen content. 
                
                encoder_hidden_states_image = shuffle_tensor_along_axis(
                    adapter.adapter_ref().conditional_embeds, 
                    axis=1
                )
                # encoder_hidden_states_image = adapter.adapter_ref().unconditional_embeds
            else:
                # use the conditional
                encoder_hidden_states_image = adapter.adapter_ref().conditional_embeds
        else:
            # doing a normal training run, always use conditional embeds
            encoder_hidden_states_image = adapter.adapter_ref().conditional_embeds
        
        # add the first frame conditioning
        if adapter.frame_embedder is not None:
            with torch.no_grad():
                # add the first frame conditioning
                conditioning_frame = adapter.adapter_ref().cached_control_image_0_1
                if conditioning_frame is None:
                    raise ValueError("No conditioning frame found")
                # make it -1 to 1
                conditioning_frame = (conditioning_frame * 2) - 1
                conditioning_frame = conditioning_frame.to(
                    hidden_states.device, dtype=hidden_states.dtype
                )
                    
                # if doing a full denoise, the latent input may be full channels here, only get first 16
                if hidden_states.shape[1] > 16:
                    hidden_states = hidden_states[:, :16, :, :, :]
                
                
                hidden_states = add_first_frame_conditioning(
                    latent_model_input=hidden_states,
                    first_frame=conditioning_frame,
                    vae=adapter.adapter_ref().sd_ref().vae,
                )
    else:
        # not active deactivate the condition embedder
        self.condition_embedder.image_embedder = None
    
    return self._orig_i2v_adapter_forward(
        hidden_states=hidden_states,
        timestep=timestep,
        encoder_hidden_states=encoder_hidden_states,
        encoder_hidden_states_image=encoder_hidden_states_image,
        return_dict=return_dict,
        attention_kwargs=attention_kwargs,
    )
    
class I2VAdapter(torch.nn.Module):
    def __init__(
        self,
        adapter: 'CustomAdapter',
        sd: 'BaseModel',
        config: 'AdapterConfig',
        train_config: 'TrainConfig',
        image_processor: Union[SiglipImageProcessor, CLIPImageProcessor],
        vision_encoder: Union[SiglipVisionModel, CLIPVisionModelWithProjection],
    ):
        super().__init__()
        # avoid circular import
        from toolkit.models.wan21.wan_attn import WanAttnProcessor2_0
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.sd_ref = weakref.ref(sd)
        self.model_config: ModelConfig = sd.model_config
        self.network_config = config.lora_config
        self.train_config = train_config
        self.config = config
        self.device_torch = sd.device_torch
        self.control_lora = None
        self.image_processor_ref: weakref.ref = weakref.ref(image_processor)
        self.vision_encoder_ref: weakref.ref = weakref.ref(vision_encoder)
        
        ve_img_size = vision_encoder.config.image_size
        ve_patch_size = vision_encoder.config.patch_size
        num_patches = (ve_img_size // ve_patch_size) ** 2
        num_vision_tokens = num_patches
        
        # siglip does not have a class token
        if not vision_encoder.__class__.__name__.lower().startswith("siglip"):
            num_vision_tokens = num_patches + 1
        model_class = sd.model.__class__.__name__
        if self.network_config is not None:
            network_kwargs = {} if self.network_config.network_kwargs is None else self.network_config.network_kwargs
            if hasattr(sd, 'target_lora_modules'):
                network_kwargs['target_lin_modules'] = sd.target_lora_modules
            if 'ignore_if_contains' not in network_kwargs:
                network_kwargs['ignore_if_contains'] = []
            network_kwargs['ignore_if_contains'] += [
                'add_k_proj',
                'add_v_proj',
                'norm_added_q',
                'norm_added_k',
            ]
            if model_class == 'WanTransformer3DModel':
                # always ignore patch_embedding
                network_kwargs['ignore_if_contains'].append('patch_embedding')
            self.control_lora = LoRASpecialNetwork(
                text_encoder=sd.text_encoder,
                unet=sd.unet,
                lora_dim=self.network_config.linear,
                multiplier=1.0,
                alpha=self.network_config.linear_alpha,
                train_unet=self.train_config.train_unet,
                train_text_encoder=self.train_config.train_text_encoder,
                conv_lora_dim=self.network_config.conv,
                conv_alpha=self.network_config.conv_alpha,
                is_sdxl=self.model_config.is_xl or self.model_config.is_ssd,
                is_v2=self.model_config.is_v2,
                is_v3=self.model_config.is_v3,
                is_pixart=self.model_config.is_pixart,
                is_auraflow=self.model_config.is_auraflow,
                is_flux=self.model_config.is_flux,
                is_lumina2=self.model_config.is_lumina2,
                is_ssd=self.model_config.is_ssd,
                is_vega=self.model_config.is_vega,
                dropout=self.network_config.dropout,
                use_text_encoder_1=self.model_config.use_text_encoder_1,
                use_text_encoder_2=self.model_config.use_text_encoder_2,
                use_bias=False,
                is_lorm=False,
                network_config=self.network_config,
                network_type=self.network_config.type,
                transformer_only=self.network_config.transformer_only,
                is_transformer=sd.is_transformer,
                base_model=sd,
                **network_kwargs
            )
            self.control_lora.force_to(self.device_torch, dtype=torch.float32)
            self.control_lora._update_torch_multiplier()
            self.control_lora.apply_to(
                sd.text_encoder,
                sd.unet,
                self.train_config.train_text_encoder,
                self.train_config.train_unet
            )
            self.control_lora.can_merge_in = False
            self.control_lora.prepare_grad_etc(sd.text_encoder, sd.unet)
            if self.train_config.gradient_checkpointing:
                self.control_lora.enable_gradient_checkpointing()
        self.frame_embedder: FrameEmbedder = None
        if self.config.i2v_do_start_frame:
            self.frame_embedder = FrameEmbedder.from_model(
                sd.unet,
                self
            )
            self.frame_embedder.to(self.device_torch)
        # hijack the blocks so we can inject our vision encoder
        attn_hog_list = []
        if model_class == 'WanTransformer3DModel':
            added_kv_proj_dim = sd.model.config.num_attention_heads * sd.model.config.attention_head_dim
            # update the model so it can accept the new input
            # wan has i2v with clip-h for i2v, additional k v attn that directly takes
            # in the penultimate_hidden_states from the vision encoder
            # the kv is on blocks[0].attn2
            sd.model.config.added_kv_proj_dim = added_kv_proj_dim
            sd.model.config['added_kv_proj_dim'] = added_kv_proj_dim
            transformer: WanTransformer3DModel = sd.model
            for block in transformer.blocks:
                block.attn2.added_kv_proj_dim = added_kv_proj_dim
                attn_module = AttentionHog(
                    added_kv_proj_dim,
                    self,
                    block.attn2,
                    transformer
                )
                # set the attn function to ours that handles custom number of vision tokens
                block.attn2.set_processor(WanAttnProcessor2_0(num_vision_tokens))
                
                attn_hog_list.append(attn_module)
        else:
            raise ValueError(f"Model {model_class} not supported")
        self.attn_hog_list = torch.nn.ModuleList(attn_hog_list)
        self.attn_hog_list.to(self.device_torch)
        
        inner_dim = sd.model.config.num_attention_heads * sd.model.config.attention_head_dim
        image_embed_dim = vision_encoder.config.hidden_size
        self.image_embedder = WanImageEmbedding(image_embed_dim, inner_dim)
        
        # override the forward method
        if model_class == 'WanTransformer3DModel':
            self.sd_ref().model._orig_i2v_adapter_forward = self.sd_ref().model.forward
            self.sd_ref().model.forward = partial(
                new_wan_forward,
                self.sd_ref().model
            )
            
            # add the wan image embedder
            self.sd_ref().model.condition_embedder._image_embedder = self.image_embedder
            self.sd_ref().model.condition_embedder._image_embedder.to(self.device_torch)
        
        self.sd_ref().model._i2v_adapter_ref = weakref.ref(self)
    def get_params(self):
        if self.control_lora is not None:
            config = {
                'text_encoder_lr': self.train_config.lr,
                'unet_lr': self.train_config.lr,
            }
            sig = inspect.signature(self.control_lora.prepare_optimizer_params)
            if 'default_lr' in sig.parameters:
                config['default_lr'] = self.train_config.lr
            if 'learning_rate' in sig.parameters:
                config['learning_rate'] = self.train_config.lr
            params_net = self.control_lora.prepare_optimizer_params(
                **config
            )
            # we want only tensors here
            params = []
            for p in params_net:
                if isinstance(p, dict):
                    params += p["params"]
                elif isinstance(p, torch.Tensor):
                    params.append(p)
                elif isinstance(p, list):
                    params += p
        else:
            params = []
        if self.frame_embedder is not None:
            # make sure the embedder is float32
            self.frame_embedder.to(torch.float32)
            params += list(self.frame_embedder.parameters())
        # add the attn hogs
        for attn_hog in self.attn_hog_list:
            params += list(attn_hog.parameters())
        
        # add the image embedder
        if self.image_embedder is not None:
            params += list(self.image_embedder.parameters())
        return params
    def load_weights(self, state_dict, strict=True):
        lora_sd = {}
        attn_hog_sd = {}
        frame_embedder_sd = {}
        image_embedder_sd = {}
        
        for key, value in state_dict.items():
            if "frame_embedder" in key:
                new_key = key.replace("frame_embedder.", "")
                frame_embedder_sd[new_key] = value
            elif "attn_hog" in key:
                new_key = key.replace("attn_hog.", "")
                attn_hog_sd[new_key] = value
            elif "image_embedder" in key:
                new_key = key.replace("image_embedder.", "")
                image_embedder_sd[new_key] = value
            else:
                lora_sd[key] = value
        # todo process state dict before loading
        if self.control_lora is not None:
            self.control_lora.load_weights(lora_sd)
        if self.frame_embedder is not None:
            self.frame_embedder.load_state_dict(
                frame_embedder_sd, strict=False)
        self.attn_hog_list.load_state_dict(
            attn_hog_sd, strict=False)
        self.image_embedder.load_state_dict(
            image_embedder_sd, strict=False)
    def get_state_dict(self):
        if self.control_lora is not None:
            lora_sd = self.control_lora.get_state_dict(dtype=torch.float32)
        else:
            lora_sd = {}
        if self.frame_embedder is not None:
            frame_embedder_sd = self.frame_embedder.state_dict()
            for key, value in frame_embedder_sd.items():
                lora_sd[f"frame_embedder.{key}"] = value
        # add the attn hogs
        attn_hog_sd = self.attn_hog_list.state_dict()
        for key, value in attn_hog_sd.items():
            lora_sd[f"attn_hog.{key}"] = value
        
        # add the image embedder
        image_embedder_sd = self.image_embedder.state_dict()
        for key, value in image_embedder_sd.items():
            lora_sd[f"image_embedder.{key}"] = value
            
        return lora_sd
    
    def condition_noisy_latents(self, latents: torch.Tensor, batch:DataLoaderBatchDTO):
        # todo handle start frame
        return latents
    
    def edit_batch_processed(self, batch: DataLoaderBatchDTO):
        with torch.no_grad():
            # we will alway get a clip image frame, if one is not passed, use image
            # or if video, pull from the first frame
            # edit the batch to pull the first frame out of a video if we have it
            # videos come in (bs, num_frames, channels, height, width)
            tensor = batch.tensor
            if batch.clip_image_tensor is None:
                if len(tensor.shape) == 5:
                    # we have a video
                    first_frames = tensor[:, 0, :, :, :].clone()
                else:
                    # we have a single image
                    first_frames = tensor.clone()
                    
                # it is -1 to 1, change it to 0 to 1
                first_frames = (first_frames + 1) / 2
                    
                # clip image tensors are preprocessed. 
                tensors_0_1 = first_frames.to(dtype=torch.float16)
                clip_out = self.adapter_ref().clip_image_processor(
                    images=tensors_0_1,
                    return_tensors="pt",
                    do_resize=True,
                    do_rescale=False,
                ).pixel_values
                
                batch.clip_image_tensor = clip_out.to(self.device_torch)
        return batch
    @property
    def is_active(self):
        return self.adapter_ref().is_active
 | 
