ai-toolkit / jobs /process /TrainSliderProcess.py
rahul7star's picture
boilerplate
fcc02a2 verified
import copy
import os
import random
from collections import OrderedDict
from typing import Union
from PIL import Image
from diffusers import T2IAdapter
from torchvision.transforms import transforms
from tqdm import tqdm
from toolkit.basic import value_map
from toolkit.config_modules import SliderConfig
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from toolkit.sd_device_states_presets import get_train_sd_device_state_preset
from toolkit.train_tools import get_torch_dtype, apply_snr_weight, apply_learnable_snr_gos
import gc
from toolkit import train_tools
from toolkit.prompt_utils import \
EncodedPromptPair, ACTION_TYPES_SLIDER, \
EncodedAnchor, concat_prompt_pairs, \
concat_anchors, PromptEmbedsCache, encode_prompts_to_cache, build_prompt_pair_batch_from_cache, split_anchors, \
split_prompt_pairs
import torch
from .BaseSDTrainProcess import BaseSDTrainProcess
def flush():
torch.cuda.empty_cache()
gc.collect()
adapter_transforms = transforms.Compose([
transforms.ToTensor(),
])
class TrainSliderProcess(BaseSDTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.prompt_txt_list = None
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.slider_config = SliderConfig(**self.get_conf('slider', {}))
self.prompt_cache = PromptEmbedsCache()
self.prompt_pairs: list[EncodedPromptPair] = []
self.anchor_pairs: list[EncodedAnchor] = []
# keep track of prompt chunk size
self.prompt_chunk_size = 1
# check if we have more targets than steps
# this can happen because of permutation son shuffling
if len(self.slider_config.targets) > self.train_config.steps:
# trim targets
self.slider_config.targets = self.slider_config.targets[:self.train_config.steps]
# get presets
self.eval_slider_device_state = get_train_sd_device_state_preset(
self.device_torch,
train_unet=False,
train_text_encoder=False,
cached_latents=self.is_latents_cached,
train_lora=False,
train_adapter=False,
train_embedding=False,
)
self.train_slider_device_state = get_train_sd_device_state_preset(
self.device_torch,
train_unet=self.train_config.train_unet,
train_text_encoder=False,
cached_latents=self.is_latents_cached,
train_lora=True,
train_adapter=False,
train_embedding=False,
)
def before_model_load(self):
pass
def hook_before_train_loop(self):
# read line by line from file
if self.slider_config.prompt_file:
self.print(f"Loading prompt file from {self.slider_config.prompt_file}")
with open(self.slider_config.prompt_file, 'r', encoding='utf-8') as f:
self.prompt_txt_list = f.readlines()
# clean empty lines
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]
self.print(f"Found {len(self.prompt_txt_list)} prompts.")
if not self.slider_config.prompt_tensors:
print(f"Prompt tensors not found. Building prompt tensors for {self.train_config.steps} steps.")
# shuffle
random.shuffle(self.prompt_txt_list)
# trim to max steps
self.prompt_txt_list = self.prompt_txt_list[:self.train_config.steps]
# trim list to our max steps
cache = PromptEmbedsCache()
print(f"Building prompt cache")
# get encoded latents for our prompts
with torch.no_grad():
# list of neutrals. Can come from file or be empty
neutral_list = self.prompt_txt_list if self.prompt_txt_list is not None else [""]
# build the prompts to cache
prompts_to_cache = []
for neutral in neutral_list:
for target in self.slider_config.targets:
prompt_list = [
f"{target.target_class}", # target_class
f"{target.target_class} {neutral}", # target_class with neutral
f"{target.positive}", # positive_target
f"{target.positive} {neutral}", # positive_target with neutral
f"{target.negative}", # negative_target
f"{target.negative} {neutral}", # negative_target with neutral
f"{neutral}", # neutral
f"{target.positive} {target.negative}", # both targets
f"{target.negative} {target.positive}", # both targets reverse
]
prompts_to_cache += prompt_list
# remove duplicates
prompts_to_cache = list(dict.fromkeys(prompts_to_cache))
# trim to max steps if max steps is lower than prompt count
# todo, this can break if we have more targets than steps, should be fixed, by reducing permuations, but could stil happen with low steps
# prompts_to_cache = prompts_to_cache[:self.train_config.steps]
# encode them
cache = encode_prompts_to_cache(
prompt_list=prompts_to_cache,
sd=self.sd,
cache=cache,
prompt_tensor_file=self.slider_config.prompt_tensors
)
prompt_pairs = []
prompt_batches = []
for neutral in tqdm(neutral_list, desc="Building Prompt Pairs", leave=False):
for target in self.slider_config.targets:
prompt_pair_batch = build_prompt_pair_batch_from_cache(
cache=cache,
target=target,
neutral=neutral,
)
if self.slider_config.batch_full_slide:
# concat the prompt pairs
# this allows us to run the entire 4 part process in one shot (for slider)
self.prompt_chunk_size = 4
concat_prompt_pair_batch = concat_prompt_pairs(prompt_pair_batch).to('cpu')
prompt_pairs += [concat_prompt_pair_batch]
else:
self.prompt_chunk_size = 1
# do them one at a time (probably not necessary after new optimizations)
prompt_pairs += [x.to('cpu') for x in prompt_pair_batch]
# setup anchors
anchor_pairs = []
for anchor in self.slider_config.anchors:
# build the cache
for prompt in [
anchor.prompt,
anchor.neg_prompt # empty neutral
]:
if cache[prompt] == None:
cache[prompt] = self.sd.encode_prompt(prompt)
anchor_batch = []
# we get the prompt pair multiplier from first prompt pair
# since they are all the same. We need to match their network polarity
prompt_pair_multipliers = prompt_pairs[0].multiplier_list
for prompt_multiplier in prompt_pair_multipliers:
# match the network multiplier polarity
anchor_scalar = 1.0 if prompt_multiplier > 0 else -1.0
anchor_batch += [
EncodedAnchor(
prompt=cache[anchor.prompt],
neg_prompt=cache[anchor.neg_prompt],
multiplier=anchor.multiplier * anchor_scalar
)
]
anchor_pairs += [
concat_anchors(anchor_batch).to('cpu')
]
if len(anchor_pairs) > 0:
self.anchor_pairs = anchor_pairs
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
# if text encoder is list
if isinstance(self.sd.text_encoder, list):
for encoder in self.sd.text_encoder:
encoder.to("cpu")
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
self.prompt_pairs = prompt_pairs
# self.anchor_pairs = anchor_pairs
flush()
if self.data_loader is not None:
# we will have images, prep the vae
self.sd.vae.eval()
self.sd.vae.to(self.device_torch)
# end hook_before_train_loop
def before_dataset_load(self):
if self.slider_config.use_adapter == 'depth':
print(f"Loading T2I Adapter for depth")
# called before LoRA network is loaded but after model is loaded
# attach the adapter here so it is there before we load the network
adapter_path = 'TencentARC/t2iadapter_depth_sd15v2'
if self.model_config.is_xl:
adapter_path = 'TencentARC/t2i-adapter-depth-midas-sdxl-1.0'
print(f"Loading T2I Adapter from {adapter_path}")
# dont name this adapter since we are not training it
self.t2i_adapter = T2IAdapter.from_pretrained(
adapter_path, torch_dtype=get_torch_dtype(self.train_config.dtype), varient="fp16"
).to(self.device_torch)
self.t2i_adapter.eval()
self.t2i_adapter.requires_grad_(False)
flush()
@torch.no_grad()
def get_adapter_images(self, batch: Union[None, 'DataLoaderBatchDTO']):
img_ext_list = ['.jpg', '.jpeg', '.png', '.webp']
adapter_folder_path = self.slider_config.adapter_img_dir
adapter_images = []
# loop through images
for file_item in batch.file_items:
img_path = file_item.path
file_name_no_ext = os.path.basename(img_path).split('.')[0]
# find the image
for ext in img_ext_list:
if os.path.exists(os.path.join(adapter_folder_path, file_name_no_ext + ext)):
adapter_images.append(os.path.join(adapter_folder_path, file_name_no_ext + ext))
break
width, height = batch.file_items[0].crop_width, batch.file_items[0].crop_height
adapter_tensors = []
# load images with torch transforms
for idx, adapter_image in enumerate(adapter_images):
# we need to centrally crop the largest dimension of the image to match the batch shape after scaling
# to the smallest dimension
img: Image.Image = Image.open(adapter_image)
if img.width > img.height:
# scale down so height is the same as batch
new_height = height
new_width = int(img.width * (height / img.height))
else:
new_width = width
new_height = int(img.height * (width / img.width))
img = img.resize((new_width, new_height))
crop_fn = transforms.CenterCrop((height, width))
# crop the center to match batch
img = crop_fn(img)
img = adapter_transforms(img)
adapter_tensors.append(img)
# stack them
adapter_tensors = torch.stack(adapter_tensors).to(
self.device_torch, dtype=get_torch_dtype(self.train_config.dtype)
)
return adapter_tensors
def hook_train_loop(self, batch: Union['DataLoaderBatchDTO', None]):
if isinstance(batch, list):
batch = batch[0]
# set to eval mode
self.sd.set_device_state(self.eval_slider_device_state)
with torch.no_grad():
dtype = get_torch_dtype(self.train_config.dtype)
# get a random pair
prompt_pair: EncodedPromptPair = self.prompt_pairs[
torch.randint(0, len(self.prompt_pairs), (1,)).item()
]
# move to device and dtype
prompt_pair.to(self.device_torch, dtype=dtype)
# get a random resolution
height, width = self.slider_config.resolutions[
torch.randint(0, len(self.slider_config.resolutions), (1,)).item()
]
if self.train_config.gradient_checkpointing:
# may get disabled elsewhere
self.sd.unet.enable_gradient_checkpointing()
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
loss_function = torch.nn.MSELoss()
pred_kwargs = {}
def get_noise_pred(neg, pos, gs, cts, dn):
down_kwargs = copy.deepcopy(pred_kwargs)
if 'down_block_additional_residuals' in down_kwargs:
dbr_batch_size = down_kwargs['down_block_additional_residuals'][0].shape[0]
if dbr_batch_size != dn.shape[0]:
amount_to_add = int(dn.shape[0] * 2 / dbr_batch_size)
down_kwargs['down_block_additional_residuals'] = [
torch.cat([sample.clone()] * amount_to_add) for sample in
down_kwargs['down_block_additional_residuals']
]
return self.sd.predict_noise(
latents=dn,
text_embeddings=train_tools.concat_prompt_embeddings(
neg, # negative prompt
pos, # positive prompt
self.train_config.batch_size,
),
timestep=cts,
guidance_scale=gs,
**down_kwargs
)
with torch.no_grad():
adapter_images = None
self.sd.unet.eval()
# for a complete slider, the batch size is 4 to begin with now
true_batch_size = prompt_pair.target_class.text_embeds.shape[0] * self.train_config.batch_size
from_batch = False
if batch is not None:
# traing from a batch of images, not generating ourselves
from_batch = True
noisy_latents, noise, timesteps, conditioned_prompts, imgs = self.process_general_training_batch(batch)
if self.slider_config.adapter_img_dir is not None:
adapter_images = self.get_adapter_images(batch)
adapter_strength_min = 0.9
adapter_strength_max = 1.0
def rand_strength(sample):
adapter_conditioning_scale = torch.rand(
(1,), device=self.device_torch, dtype=dtype
)
adapter_conditioning_scale = value_map(
adapter_conditioning_scale,
0.0,
1.0,
adapter_strength_min,
adapter_strength_max
)
return sample.to(self.device_torch, dtype=dtype).detach() * adapter_conditioning_scale
down_block_additional_residuals = self.t2i_adapter(adapter_images)
down_block_additional_residuals = [
rand_strength(sample) for sample in down_block_additional_residuals
]
pred_kwargs['down_block_additional_residuals'] = down_block_additional_residuals
# denoised_latents = torch.cat([noisy_latents] * self.prompt_chunk_size, dim=0)
denoised_latents = noisy_latents
current_timestep = timesteps
else:
if self.train_config.noise_scheduler == 'flowmatch':
linear_timesteps = any([
self.train_config.linear_timesteps,
self.train_config.linear_timesteps2,
self.train_config.timestep_type == 'linear',
])
timestep_type = 'linear' if linear_timesteps else None
if timestep_type is None:
timestep_type = self.train_config.timestep_type
# make fake latents
l = torch.randn(
true_batch_size, 16, height, width
).to(self.device_torch, dtype=dtype)
self.sd.noise_scheduler.set_train_timesteps(
self.train_config.max_denoising_steps,
device=self.device_torch,
timestep_type=timestep_type,
latents=l
)
else:
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
# ger a random number of steps
timesteps_to = torch.randint(
1, self.train_config.max_denoising_steps - 1, (1,)
).item()
# get noise
noise = self.sd.get_latent_noise(
pixel_height=height,
pixel_width=width,
batch_size=true_batch_size,
noise_offset=self.train_config.noise_offset,
).to(self.device_torch, dtype=dtype)
# get latents
latents = noise * self.sd.noise_scheduler.init_noise_sigma
latents = latents.to(self.device_torch, dtype=dtype)
assert not self.network.is_active
self.sd.unet.eval()
# pass the multiplier list to the network
# double up since we are doing cfg
self.network.multiplier = prompt_pair.multiplier_list + prompt_pair.multiplier_list
denoised_latents = self.sd.diffuse_some_steps(
latents, # pass simple noise latents
prompt_pair.target_class,
start_timesteps=0,
total_timesteps=timesteps_to,
guidance_scale=3,
bypass_guidance_embedding=False
)
if hasattr(self.sd.noise_scheduler, 'set_train_timesteps'):
noise_scheduler.set_train_timesteps(1000, device=self.device_torch)
else:
noise_scheduler.set_timesteps(1000)
current_timestep_index = int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
current_timestep = noise_scheduler.timesteps[current_timestep_index]
# split the latents into out prompt pair chunks
# denoised_latent_chunks = torch.chunk(denoised_latents, self.prompt_chunk_size, dim=0)
# denoised_latent_chunks = [x.detach() for x in denoised_latent_chunks]
denoised_latent_chunks = [denoised_latents]
# flush() # 4.2GB to 3GB on 512x512
mask_multiplier = torch.ones((denoised_latents.shape[0], 1, 1, 1), device=self.device_torch, dtype=dtype)
has_mask = False
if batch and batch.mask_tensor is not None:
with self.timer('get_mask_multiplier'):
# upsampling no supported for bfloat16
mask_multiplier = batch.mask_tensor.to(self.device_torch, dtype=torch.float16).detach()
# scale down to the size of the latents, mask multiplier shape(bs, 1, width, height), noisy_latents shape(bs, channels, width, height)
mask_multiplier = torch.nn.functional.interpolate(
mask_multiplier, size=(noisy_latents.shape[2], noisy_latents.shape[3])
)
# expand to match latents
mask_multiplier = mask_multiplier.expand(-1, noisy_latents.shape[1], -1, -1)
mask_multiplier = mask_multiplier.to(self.device_torch, dtype=dtype).detach()
has_mask = True
if has_mask:
unmasked_target = get_noise_pred(
prompt_pair.positive_target, # negative prompt
prompt_pair.target_class, # positive prompt
1,
current_timestep,
denoised_latents
)
unmasked_target = unmasked_target.detach()
unmasked_target.requires_grad = False
else:
unmasked_target = None
# 4.20 GB RAM for 512x512
# positive_latents = get_noise_pred(
# prompt_pair.positive_target, # negative prompt
# prompt_pair.negative_target, # positive prompt
# 1,
# current_timestep,
# denoised_latents
# )
# positive_latents = positive_latents.detach()
# positive_latents.requires_grad = False
# neutral_latents = get_noise_pred(
# prompt_pair.positive_target, # negative prompt
# prompt_pair.empty_prompt, # positive prompt (normally neutral
# 1,
# current_timestep,
# denoised_latents
# )
# neutral_latents = neutral_latents.detach()
# neutral_latents.requires_grad = False
# unconditional_latents = get_noise_pred(
# prompt_pair.positive_target, # negative prompt
# prompt_pair.positive_target, # positive prompt
# 1,
# current_timestep,
# denoised_latents
# )
# unconditional_latents = unconditional_latents.detach()
# unconditional_latents.requires_grad = False
# we just need positive target, negative target, and empty prompt to calculate all
# since we are in no grad, we can easily do it in a single step
embeddings = train_tools.concat_prompt_embeddings(
prompt_pair.positive_target,
prompt_pair.empty_prompt,
1
)
embeddings = train_tools.concat_prompt_embeddings(
embeddings,
prompt_pair.negative_target,
1
)
all_pred = self.sd.predict_noise(
latents=torch.cat([denoised_latents] * 3, dim=0),
text_embeddings=embeddings,
timestep=torch.cat([current_timestep] * 3, dim=0),
)
all_pred = all_pred.detach()
all_pred.requires_grad = False
positive_pred, neutral_pred, unconditional_pred = torch.chunk(all_pred, 3, dim=0)
# doing them backward here as it was originally for erasing
positive_latents = unconditional_pred
neutral_latents = neutral_pred
unconditional_latents = positive_pred
denoised_latents = denoised_latents.detach()
self.sd.set_device_state(self.train_slider_device_state)
self.sd.unet.train()
# start accumulating gradients
self.optimizer.zero_grad(set_to_none=True)
anchor_loss_float = None
with torch.no_grad():
if self.slider_config.low_ram:
prompt_pair_chunks = split_prompt_pairs(prompt_pair.detach(), self.prompt_chunk_size)
denoised_latent_chunks = denoised_latent_chunks # just to have it in one place
positive_latents_chunks = torch.chunk(positive_latents.detach(), self.prompt_chunk_size, dim=0)
neutral_latents_chunks = torch.chunk(neutral_latents.detach(), self.prompt_chunk_size, dim=0)
unconditional_latents_chunks = torch.chunk(
unconditional_latents.detach(),
self.prompt_chunk_size,
dim=0
)
mask_multiplier_chunks = torch.chunk(mask_multiplier, self.prompt_chunk_size, dim=0)
if unmasked_target is not None:
unmasked_target_chunks = torch.chunk(unmasked_target, self.prompt_chunk_size, dim=0)
else:
unmasked_target_chunks = [None for _ in range(self.prompt_chunk_size)]
else:
# run through in one instance
prompt_pair_chunks = [prompt_pair.detach()]
denoised_latent_chunks = [torch.cat(denoised_latent_chunks, dim=0).detach()]
positive_latents_chunks = [positive_latents.detach()]
neutral_latents_chunks = [neutral_latents.detach()]
unconditional_latents_chunks = [unconditional_latents.detach()]
mask_multiplier_chunks = [mask_multiplier]
unmasked_target_chunks = [unmasked_target]
# flush()
assert len(prompt_pair_chunks) == len(denoised_latent_chunks)
# 3.28 GB RAM for 512x512
with self.network:
assert self.network.is_active
loss_list = []
for prompt_pair_chunk, \
denoised_latent_chunk, \
positive_latents_chunk, \
neutral_latents_chunk, \
unconditional_latents_chunk, \
mask_multiplier_chunk, \
unmasked_target_chunk \
in zip(
prompt_pair_chunks,
denoised_latent_chunks,
positive_latents_chunks,
neutral_latents_chunks,
unconditional_latents_chunks,
mask_multiplier_chunks,
unmasked_target_chunks
):
self.network.multiplier = prompt_pair_chunk.multiplier_list
target_latents = self.sd.predict_noise(
latents=denoised_latent_chunk.detach(),
text_embeddings=prompt_pair_chunk.target_class,
timestep=current_timestep,
)
guidance_scale = 1.0
offset = guidance_scale * (positive_latents_chunk - unconditional_latents_chunk)
# make offset multiplier based on actions
offset_multiplier_list = []
for action in prompt_pair_chunk.action_list:
if action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE:
offset_multiplier_list += [-1.0]
elif action == ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE:
offset_multiplier_list += [1.0]
offset_multiplier = torch.tensor(offset_multiplier_list).to(offset.device, dtype=offset.dtype)
# make offset multiplier match rank of offset
offset_multiplier = offset_multiplier.view(offset.shape[0], 1, 1, 1)
offset *= offset_multiplier
offset_neutral = neutral_latents_chunk
# offsets are already adjusted on a per-batch basis
offset_neutral += offset
offset_neutral = offset_neutral.detach().requires_grad_(False)
# 16.15 GB RAM for 512x512 -> 4.20GB RAM for 512x512 with new grad_checkpointing
loss = torch.nn.functional.mse_loss(target_latents.float(), offset_neutral.float(), reduction="none")
# do inverted mask to preserve non masked
if has_mask and unmasked_target_chunk is not None:
loss = loss * mask_multiplier_chunk
# match the mask unmasked_target_chunk
mask_target_loss = torch.nn.functional.mse_loss(
target_latents.float(),
unmasked_target_chunk.float(),
reduction="none"
)
mask_target_loss = mask_target_loss * (1.0 - mask_multiplier_chunk)
loss += mask_target_loss
loss = loss.mean([1, 2, 3])
if self.train_config.learnable_snr_gos:
if from_batch:
# match batch size
loss = apply_snr_weight(loss, timesteps, self.sd.noise_scheduler,
self.train_config.min_snr_gamma)
else:
# match batch size
timesteps_index_list = [current_timestep_index for _ in range(target_latents.shape[0])]
# add snr_gamma
loss = apply_learnable_snr_gos(loss, timesteps_index_list, self.snr_gos)
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001:
if from_batch:
# match batch size
loss = apply_snr_weight(loss, timesteps, self.sd.noise_scheduler,
self.train_config.min_snr_gamma)
else:
# match batch size
timesteps_index_list = [current_timestep_index for _ in range(target_latents.shape[0])]
# add min_snr_gamma
loss = apply_snr_weight(loss, timesteps_index_list, noise_scheduler,
self.train_config.min_snr_gamma)
loss = loss.mean() * prompt_pair_chunk.weight
loss.backward()
loss_list.append(loss.item())
del target_latents
del offset_neutral
del loss
# flush()
optimizer.step()
lr_scheduler.step()
loss_float = sum(loss_list) / len(loss_list)
if anchor_loss_float is not None:
loss_float += anchor_loss_float
del (
positive_latents,
neutral_latents,
unconditional_latents,
# latents
)
# move back to cpu
prompt_pair.to("cpu")
# flush()
# reset network
self.network.multiplier = 1.0
loss_dict = OrderedDict(
{'loss': loss_float},
)
if anchor_loss_float is not None:
loss_dict['sl_l'] = loss_float
loss_dict['an_l'] = anchor_loss_float
return loss_dict
# end hook_train_loop