File size: 10,693 Bytes
fcc02a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import glob
import os
from collections import OrderedDict
import random
from typing import Optional, List

from safetensors.torch import save_file, load_file
from tqdm import tqdm

from toolkit.layers import ReductionKernel
from toolkit.stable_diffusion_model import PromptEmbeds
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import gc
from toolkit import train_tools

import torch
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion


def flush():
    torch.cuda.empty_cache()
    gc.collect()


class RescaleConfig:
    def __init__(
            self,
            **kwargs
    ):
        self.from_resolution = kwargs.get('from_resolution', 512)
        self.scale = kwargs.get('scale', 0.5)
        self.latent_tensor_dir = kwargs.get('latent_tensor_dir', None)
        self.num_latent_tensors = kwargs.get('num_latent_tensors', 1000)
        self.to_resolution = kwargs.get('to_resolution', int(self.from_resolution * self.scale))
        self.prompt_dropout = kwargs.get('prompt_dropout', 0.1)


class PromptEmbedsCache:
    prompts: dict[str, PromptEmbeds] = {}

    def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
        self.prompts[__name] = __value

    def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
        if __name in self.prompts:
            return self.prompts[__name]
        else:
            return None


class TrainSDRescaleProcess(BaseSDTrainProcess):
    def __init__(self, process_id: int, job, config: OrderedDict):
        # pass our custom pipeline to super so it sets it up
        super().__init__(process_id, job, config)
        self.step_num = 0
        self.start_step = 0
        self.device = self.get_conf('device', self.job.device)
        self.device_torch = torch.device(self.device)
        self.rescale_config = RescaleConfig(**self.get_conf('rescale', required=True))
        self.reduce_size_fn = ReductionKernel(
            in_channels=4,
            kernel_size=int(self.rescale_config.from_resolution // self.rescale_config.to_resolution),
            dtype=get_torch_dtype(self.train_config.dtype),
            device=self.device_torch,
        )

        self.latent_paths: List[str] = []
        self.empty_embedding: PromptEmbeds = None

    def before_model_load(self):
        pass

    def get_latent_tensors(self):
        dtype = get_torch_dtype(self.train_config.dtype)

        num_to_generate = 0
        # check if dir exists
        if not os.path.exists(self.rescale_config.latent_tensor_dir):
            os.makedirs(self.rescale_config.latent_tensor_dir)
            num_to_generate = self.rescale_config.num_latent_tensors
        else:
            # find existing
            current_tensor_list = glob.glob(os.path.join(self.rescale_config.latent_tensor_dir, "*.safetensors"))
            num_to_generate = self.rescale_config.num_latent_tensors - len(current_tensor_list)
            self.latent_paths = current_tensor_list

        if num_to_generate > 0:
            print(f"Generating {num_to_generate}/{self.rescale_config.num_latent_tensors} latent tensors")

            # unload other model
            self.sd.unet.to('cpu')

            # load aux network
            self.sd_parent = StableDiffusion(
                self.device_torch,
                model_config=self.model_config,
                dtype=self.train_config.dtype,
            )
            self.sd_parent.load_model()
            self.sd_parent.unet.to(self.device_torch, dtype=dtype)
            # we dont need text encoder for this

            del self.sd_parent.text_encoder
            del self.sd_parent.tokenizer

            self.sd_parent.unet.eval()
            self.sd_parent.unet.requires_grad_(False)

            # save current seed state for training
            rng_state = torch.get_rng_state()
            cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None

            text_embeddings = train_tools.concat_prompt_embeddings(
                self.empty_embedding,  # unconditional (negative prompt)
                self.empty_embedding,  # conditional (positive prompt)
                self.train_config.batch_size,
            )
            torch.set_default_device(self.device_torch)

            for i in tqdm(range(num_to_generate)):
                dtype = get_torch_dtype(self.train_config.dtype)
                # get a random seed
                seed = torch.randint(0, 2 ** 32, (1,)).item()
                # zero pad seed string to max length
                seed_string = str(seed).zfill(10)
                # set seed
                torch.manual_seed(seed)
                if torch.cuda.is_available():
                    torch.cuda.manual_seed(seed)

                # # ger a random number of steps
                timesteps_to = self.train_config.max_denoising_steps

                # set the scheduler to the number of steps
                self.sd.noise_scheduler.set_timesteps(
                    timesteps_to, device=self.device_torch
                )

                noise = self.sd.get_latent_noise(
                    pixel_height=self.rescale_config.from_resolution,
                    pixel_width=self.rescale_config.from_resolution,
                    batch_size=self.train_config.batch_size,
                    noise_offset=self.train_config.noise_offset,
                ).to(self.device_torch, dtype=dtype)

                # get latents
                latents = noise * self.sd.noise_scheduler.init_noise_sigma
                latents = latents.to(self.device_torch, dtype=dtype)

                # get random guidance scale from 1.0 to 10.0 (CFG)
                guidance_scale = torch.rand(1).item() * 9.0 + 1.0

                # do a timestep of 1
                timestep = 1

                noise_pred_target = self.sd_parent.predict_noise(
                    latents,
                    text_embeddings=text_embeddings,
                    timestep=timestep,
                    guidance_scale=guidance_scale
                )

                # build state dict
                state_dict = OrderedDict()
                state_dict['noise_pred_target'] = noise_pred_target.to('cpu', dtype=torch.float16)
                state_dict['latents'] = latents.to('cpu', dtype=torch.float16)
                state_dict['guidance_scale'] = torch.tensor(guidance_scale).to('cpu', dtype=torch.float16)
                state_dict['timestep'] = torch.tensor(timestep).to('cpu', dtype=torch.float16)
                state_dict['timesteps_to'] = torch.tensor(timesteps_to).to('cpu', dtype=torch.float16)
                state_dict['seed'] = torch.tensor(seed).to('cpu', dtype=torch.float32) # must be float 32 to prevent overflow

                file_name = f"{seed_string}_{i}.safetensors"
                file_path = os.path.join(self.rescale_config.latent_tensor_dir, file_name)
                save_file(state_dict, file_path)
                self.latent_paths.append(file_path)

            print("Removing parent model")
            # delete parent
            del self.sd_parent
            flush()

            torch.set_rng_state(rng_state)
            if cuda_rng_state is not None:
                torch.cuda.set_rng_state(cuda_rng_state)
            self.sd.unet.to(self.device_torch, dtype=dtype)

    def hook_before_train_loop(self):
        # encode our empty prompt
        self.empty_embedding = self.sd.encode_prompt("")
        self.empty_embedding = self.empty_embedding.to(self.device_torch,
                                                       dtype=get_torch_dtype(self.train_config.dtype))

        # Move train model encoder to cpu
        if isinstance(self.sd.text_encoder, list):
            for encoder in self.sd.text_encoder:
                encoder.to('cpu')
                encoder.eval()
                encoder.requires_grad_(False)
        else:
            self.sd.text_encoder.to('cpu')
            self.sd.text_encoder.eval()
            self.sd.text_encoder.requires_grad_(False)

        # self.sd.unet.to('cpu')
        flush()

        self.get_latent_tensors()

        flush()
        # end hook_before_train_loop

    def hook_train_loop(self, batch):
        dtype = get_torch_dtype(self.train_config.dtype)

        loss_function = torch.nn.MSELoss()

        # train it
        # Begin gradient accumulation
        self.sd.unet.train()
        self.sd.unet.requires_grad_(True)
        self.sd.unet.to(self.device_torch, dtype=dtype)

        with torch.no_grad():
            self.optimizer.zero_grad()

            # pick random latent tensor
            latent_path = random.choice(self.latent_paths)
            latent_tensor = load_file(latent_path)

            noise_pred_target = (latent_tensor['noise_pred_target']).to(self.device_torch, dtype=dtype)
            latents = (latent_tensor['latents']).to(self.device_torch, dtype=dtype)
            guidance_scale = (latent_tensor['guidance_scale']).item()
            timestep = int((latent_tensor['timestep']).item())
            timesteps_to = int((latent_tensor['timesteps_to']).item())
            # seed = int((latent_tensor['seed']).item())

            text_embeddings = train_tools.concat_prompt_embeddings(
                self.empty_embedding,  # unconditional (negative prompt)
                self.empty_embedding,  # conditional (positive prompt)
                self.train_config.batch_size,
            )
            self.sd.noise_scheduler.set_timesteps(
                timesteps_to, device=self.device_torch
            )

            denoised_target = self.sd.noise_scheduler.step(noise_pred_target, timestep, latents).prev_sample

            # get the reduced latents
            # reduced_pred = self.reduce_size_fn(noise_pred_target.detach())
            denoised_target = self.reduce_size_fn(denoised_target.detach())
            reduced_latents = self.reduce_size_fn(latents.detach())

        denoised_target.requires_grad = False
        self.optimizer.zero_grad()
        noise_pred_train = self.sd.predict_noise(
            reduced_latents,
            text_embeddings=text_embeddings,
            timestep=timestep,
            guidance_scale=guidance_scale
        )
        denoised_pred = self.sd.noise_scheduler.step(noise_pred_train, timestep, reduced_latents).prev_sample
        loss = loss_function(denoised_pred, denoised_target)
        loss_float = loss.item()
        loss.backward()
        self.optimizer.step()
        self.lr_scheduler.step()
        self.optimizer.zero_grad()

        flush()

        loss_dict = OrderedDict(
            {'loss': loss_float},
        )

        return loss_dict
        # end hook_train_loop