Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,387 Bytes
65d89cc e3d64e7 ee39732 e3d64e7 7f7529f 7901d19 9518dee 7901d19 e3d64e7 ebd0ba5 7eb0c5d 7f7529f 7eb0c5d ee39732 e3d64e7 bab4f1e e3d64e7 39dbd73 22a57d0 39dbd73 64fffe5 39dbd73 becef92 39dbd73 e3d64e7 a067b5c 3f7b9a5 6b8e9f4 3f7b9a5 473a889 2bf04fb ee39732 473a889 ee39732 e592b42 8f9d816 3f7b9a5 6b8e9f4 4a08685 e3d64e7 4a08685 e3d64e7 4a08685 e3d64e7 4a08685 e3d64e7 4a08685 e3d64e7 e289134 a34a4d3 e289134 4a08685 b867c1e 93fb613 b867c1e 262a0f7 e3d64e7 b867c1e 9646a15 b867c1e 3860b2d b867c1e e3d64e7 0a24268 e3d64e7 0a24268 5bff41c 0a24268 e3d64e7 b2265e3 e3d64e7 4a08685 e3d64e7 dd8e6d1 e3d64e7 4a08685 e3d64e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
import spaces
import torch
from diffusers import AutoencoderKLWan, WanPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
import random
import os
# LIGHT WEIGHT 1.3b
# MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
# LORA_REPO_ID = "Kijai/WanVideo_comfy"
# LORA_FILENAME = "Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors"
## This is working well ##
MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers"
#MODEL_ID = "FastDM/Wan2.2-I2V-A14B-Merge-Lightning-V1.0-Diffusers"
## below model has a blury output but it get loaded
##MODEL_ID ="Runware/Wan2.2-TI2V-5B"
## all these are exp and not wokring due to memoerty issue
#MODEL_ID ="Wan-AI/Wan2.2-T2V-A14B-Diffusers"
#MODEL_ID ="linoyts/Wan2.2-T2V-A14B-Diffusers-BF16"
#MODEL_ID = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/VideoExplain")
from huggingface_hub import HfApi, upload_file
import os
import uuid
import logging
import os
import uuid
import logging
from datetime import datetime
from huggingface_hub import HfApi, upload_file
import subprocess
import tempfile
import logging
import shutil
import os
from huggingface_hub import HfApi, upload_file
from datetime import datetime
import uuid
HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/VideoExplain")
def upscale_and_upload_4k(input_video_path: str, summary_text: str) -> str:
"""
Upscale a video to 4K and upload it to Hugging Face Hub without replacing the original file.
Args:
input_video_path (str): Path to the original video.
summary_text (str): Text summary to upload alongside the video.
Returns:
str: Hugging Face folder path where the video and summary were uploaded.
"""
logging.info(f"Upscaling video to 4K for upload: {input_video_path}")
# Create a temporary file for the upscaled video
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled:
upscaled_path = tmp_upscaled.name
# FFmpeg upscale command
cmd = [
"ffmpeg",
"-i", input_video_path,
"-vf", "scale=3840:2160:flags=lanczos",
"-c:v", "libx264",
"-crf", "18",
"-preset", "slow",
"-y",
upscaled_path,
]
try:
subprocess.run(cmd, check=True, capture_output=True)
logging.info(f"✅ Upscaled video created at: {upscaled_path}")
except subprocess.CalledProcessError as e:
logging.error(f"FFmpeg failed:\n{e.stderr.decode()}")
raise
# Create a date-based folder on HF
today_str = datetime.now().strftime("%Y-%m-%d")
unique_subfolder = f"Upload-4K-{uuid.uuid4().hex[:8]}"
hf_folder = f"{today_str}/{unique_subfolder}"
# Upload video
video_filename = os.path.basename(input_video_path)
video_hf_path = f"{hf_folder}/{video_filename}"
upload_file(
path_or_fileobj=upscaled_path,
path_in_repo=video_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded 4K video to HF: {video_hf_path}")
# Upload summary.txt
summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
summary_hf_path = f"{hf_folder}/summary.txt"
upload_file(
path_or_fileobj=summary_file,
path_in_repo=summary_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")
# Cleanup temporary files
os.remove(upscaled_path)
os.remove(summary_file)
return hf_folder
def upload_to_hf(video_path, summary_text):
api = HfApi()
# Create a date-based folder (YYYY-MM-DD)
today_str = datetime.now().strftime("%Y-%m-%d")
date_folder = today_str
# Generate a unique subfolder for this upload
unique_subfolder = f"Wan22-Insta-upload_{uuid.uuid4().hex[:8]}"
hf_folder = f"{date_folder}/{unique_subfolder}"
logging.info(f"Uploading files to HF folder: {hf_folder} in repo {HF_MODEL}")
# Upload video
video_filename = os.path.basename(video_path)
video_hf_path = f"{hf_folder}/{video_filename}"
upload_file(
path_or_fileobj=video_path,
path_in_repo=video_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded video to HF: {video_hf_path}")
# Upload summary.txt
summary_file = "/tmp/summary.txt"
with open(summary_file, "w", encoding="utf-8") as f:
f.write(summary_text)
summary_hf_path = f"{hf_folder}/summary.txt"
upload_file(
path_or_fileobj=summary_file,
path_in_repo=summary_hf_path,
repo_id=HF_MODEL,
repo_type="model",
token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
)
logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")
return hf_folder
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(
MODEL_ID, vae=vae, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")
torch.cuda.empty_cache()
# hold lora for now
# pipe.load_lora_weights(
# "vrgamedevgirl84/Wan14BT2VFusioniX",
# weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors",
# adapter_name="phantom"
# )
# LORA_REPO_ID = "rahul7star/wan2.2Lora"
# LORA_FILENAME = "wan2.2/Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()
# LORA_REPO_ID = "yeqiu168182/NSFW-22-H-e8"
# LORA_FILENAME = "NSFW-22-H-e8.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()
# LORA_REPO_ID = "Kijai/WanVideo_comfy"
# LORA_FILENAME = "Wan22-Lightning/Wan2.2-Lightning_T2V-A14B-4steps-lora_LOW_fp16.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()
#####################################################
# MOD_VALUE = 32
# DEFAULT_H_SLIDER_VALUE = 512
# DEFAULT_W_SLIDER_VALUE = 896
# # Environment variable check
# IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True"
# # Original limits
# ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1280
# ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1280
# ORIGINAL_MAX_DURATION = round(81/24, 1) # MAX_FRAMES_MODEL/FIXED_FPS
# # Limited space constants
# LIMITED_MAX_RESOLUTION = 640
# LIMITED_MAX_DURATION = 2.0
# LIMITED_MAX_STEPS = 4
# # Set limits based on environment variable
# if IS_ORIGINAL_SPACE:
# SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
# SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
# MAX_DURATION = LIMITED_MAX_DURATION
# MAX_STEPS = LIMITED_MAX_STEPS
# else:
# SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
# SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
# MAX_DURATION = ORIGINAL_MAX_DURATION
# MAX_STEPS = 8
# MAX_SEED = np.iinfo(np.int32).max
# FIXED_FPS = 24
# FIXED_OUTPUT_FPS = 18 # we downspeed the output video as a temporary "trick"
# MIN_FRAMES_MODEL = 8
# MAX_FRAMES_MODEL = 81
#New math to make it High Res
# MOD_VALUE = 32
# # Defaults for higher-res generation
# DEFAULT_H_SLIDER_VALUE = 768
# DEFAULT_W_SLIDER_VALUE = 1344 # 16:9 friendly and divisible by MOD_VALUE
# # Original Space = Hugging Face space with compute limits
# IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True"
# # Conservative limits for low-end environments
# LIMITED_MAX_RESOLUTION = 640
# LIMITED_MAX_DURATION = 2.0
# LIMITED_MAX_STEPS = 4
# # Generous limits for local or Pro spaces
# ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1536
# ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1536
# ORIGINAL_MAX_DURATION = round(81 / 24, 1) # 3.4 seconds
# ORIGINAL_MAX_STEPS = 8
# # Use limited or original (generous) settings
# if IS_ORIGINAL_SPACE:
# SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
# SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
# MAX_DURATION = LIMITED_MAX_DURATION
# MAX_STEPS = LIMITED_MAX_STEPS
# else:
# SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
# SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
# MAX_DURATION = ORIGINAL_MAX_DURATION
# MAX_STEPS = ORIGINAL_MAX_STEPS
# MAX_SEED = np.iinfo(np.int32).max
# FIXED_FPS = 24
# FIXED_OUTPUT_FPS = 18 # reduce final video FPS to save space
# MIN_FRAMES_MODEL = 8
# MAX_FRAMES_MODEL = 81
# LORA_REPO_ID = "rahul7star/wan2.2Lora"
# LORA_FILENAME = "c0wg1rl.3_wan22-5b-ti2v - e380.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()
LORA_REPO_ID = "UnifiedHorusRA/Missionary_POV_Wan_2.2_5B_LoRA"
LORA_FILENAME = "missionary-pov-wan2.2_5b-v1.0-vfxai.safetensors"
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()
# Constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 896
DEFAULT_W_SLIDER_VALUE = 896
NEW_FORMULA_MAX_AREA = 720 * 1024
SLIDER_MIN_H, SLIDER_MAX_H = 256, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 256, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 25
MAX_FRAMES_MODEL = 193
FIXED_OUTPUT_FPS = 24
IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True"
# Conservative limits for low-end environments
LIMITED_MAX_RESOLUTION = 640
LIMITED_MAX_DURATION = 2.0
LIMITED_MAX_STEPS = 50 #4
# Generous limits for local or Pro spaces
ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1536
ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1536
ORIGINAL_MAX_DURATION = round(81 / 24, 1) # 3.4 seconds
ORIGINAL_MAX_STEPS = 30 #8
if IS_ORIGINAL_SPACE:
SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
MAX_DURATION = LIMITED_MAX_DURATION
MAX_STEPS = LIMITED_MAX_STEPS
else:
SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
MAX_DURATION = ORIGINAL_MAX_DURATION
MAX_STEPS = ORIGINAL_MAX_STEPS
default_prompt_t2v = "cinematic footage, group of pedestrians dancing in the streets of NYC, high quality breakdance, 4K, tiktok video, intricate details, instagram feel, dynamic camera, smooth dance motion, dimly lit, stylish, beautiful faces, smiling, music video"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"
def get_durationold(prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
progress):
if steps > 4 and duration_seconds > 2:
return 90
elif steps > 4 or duration_seconds > 2:
return 75
else:
return 60
def get_duration(
prompt, height, width,
negative_prompt, duration_seconds,
guidance_scale, steps,
seed, randomize_seed,
progress,
):
duration = int(duration_seconds) * int(steps) * 2.25 + 5
return duration
@spaces.GPU(duration=get_duration)
def generate_video(prompt, height, width,
negative_prompt=default_negative_prompt, duration_seconds = 2,
guidance_scale = 0, steps = 50,
seed = 42, randomize_seed = False,
progress=gr.Progress(track_tqdm=True)):
if not prompt or prompt.strip() == "":
raise gr.Error("Please enter a text prompt. Try to use long and precise descriptions.")
# Apply limits based on environment variable
if IS_ORIGINAL_SPACE:
height = min(height, LIMITED_MAX_RESOLUTION)
width = min(width, LIMITED_MAX_RESOLUTION)
duration_seconds = min(duration_seconds, LIMITED_MAX_DURATION)
steps = min(steps, LIMITED_MAX_STEPS)
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
with torch.inference_mode():
output_frames_list = pipe(
prompt=prompt, negative_prompt=negative_prompt,
height=target_h, width=target_w, num_frames=num_frames,
guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
generator=torch.Generator(device="cuda").manual_seed(current_seed)
).frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
video_path = tmpfile.name
export_to_video(output_frames_list, video_path, fps=FIXED_OUTPUT_FPS)
#upscale_and_upload_4k(video_path, prompt)
return video_path, current_seed
with gr.Blocks(css="body { max-width: 100vw; overflow-x: hidden; }") as demo:
gr.HTML('<meta name="viewport" content="width=device-width, initial-scale=1">')
# ... your other components here ...
gr.Markdown("# ⚡ InstaVideo - FastWan2.2 Demo")
# Add notice for limited spaces
if IS_ORIGINAL_SPACE:
gr.Markdown("⚠️ **This free public demo limits the resolution to 640px, duration to 2s, and inference steps to 4. For full capabilities please duplicate this space.**")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...")
with gr.Accordion("Advanced Settings", open=False):
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
with gr.Row():
height_input = gr.Slider(
minimum=SLIDER_MIN_H,
maximum=SLIDER_MAX_H,
step=MOD_VALUE,
value=min(DEFAULT_H_SLIDER_VALUE, SLIDER_MAX_H),
label=f"Output Height (multiple of {MOD_VALUE})"
)
width_input = gr.Slider(
minimum=SLIDER_MIN_W,
maximum=SLIDER_MAX_W,
step=MOD_VALUE,
value=min(DEFAULT_W_SLIDER_VALUE, SLIDER_MAX_W),
label=f"Output Width (multiple of {MOD_VALUE})"
)
duration_seconds_input = gr.Slider(
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
maximum=MAX_DURATION,
step=0.1,
value=2,
label="Duration (seconds)",
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
)
steps_slider = gr.Slider(minimum=1, maximum=MAX_STEPS, step=1, value=4, label="Inference Steps")
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
generate_button = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
ui_inputs = [
prompt_input, height_input, width_input,
negative_prompt_input, duration_seconds_input,
guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
]
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
# Adjust examples based on space limits
example_configs = [
["a majestic eagle soaring through mountain peaks, cinematic aerial view", 896, 512],
["a serene ocean wave crashing on a sandy beach at sunset", 448, 832],
["a field of flowers swaying in the wind, spring morning light", 512, 896],
]
if IS_ORIGINAL_SPACE:
# Limit example resolutions for limited spaces
example_configs = [
[example[0], min(example[1], LIMITED_MAX_RESOLUTION), min(example[2], LIMITED_MAX_RESOLUTION)]
for example in example_configs
]
gr.Examples(
examples=example_configs,
inputs=[prompt_input, height_input, width_input],
outputs=[video_output, seed_input],
fn=generate_video,
cache_examples="lazy"
)
if __name__ == "__main__":
demo.queue().launch() |