File size: 18,387 Bytes
65d89cc
e3d64e7
 
 
 
 
 
 
 
 
 
ee39732
 
 
e3d64e7
 
 
 
 
 
7f7529f
 
7901d19
9518dee
7901d19
e3d64e7
ebd0ba5
 
 
 
7eb0c5d
7f7529f
7eb0c5d
 
ee39732
e3d64e7
bab4f1e
e3d64e7
 
 
39dbd73
 
 
 
 
 
 
 
 
 
 
22a57d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39dbd73
 
 
 
 
 
 
 
 
64fffe5
39dbd73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
becef92
39dbd73
e3d64e7
 
 
 
 
 
 
 
 
 
 
 
 
 
a067b5c
3f7b9a5
6b8e9f4
3f7b9a5
473a889
 
2bf04fb
 
 
 
 
ee39732
 
 
 
 
473a889
 
 
 
 
 
 
 
 
 
 
ee39732
e592b42
 
 
 
 
 
8f9d816
3f7b9a5
6b8e9f4
 
 
 
 
 
4a08685
 
 
 
e3d64e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a08685
e3d64e7
4a08685
 
 
e3d64e7
4a08685
 
e3d64e7
4a08685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3d64e7
e289134
 
 
a34a4d3
 
 
 
 
 
 
 
 
 
 
 
e289134
 
 
 
 
 
4a08685
 
 
 
 
 
 
 
 
 
 
b867c1e
93fb613
b867c1e
 
262a0f7
e3d64e7
b867c1e
 
 
 
9646a15
b867c1e
 
 
 
 
3860b2d
b867c1e
 
 
 
 
 
 
 
 
 
 
 
e3d64e7
 
 
0a24268
e3d64e7
 
 
 
 
 
 
 
 
 
 
0a24268
 
 
 
 
 
 
 
 
5bff41c
0a24268
 
 
 
 
e3d64e7
 
 
b2265e3
e3d64e7
 
4a08685
e3d64e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd8e6d1
e3d64e7
 
 
 
 
 
 
4a08685
 
e3d64e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import spaces
import torch
from diffusers import AutoencoderKLWan, WanPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
import random
import os



# LIGHT WEIGHT 1.3b
# MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
# LORA_REPO_ID = "Kijai/WanVideo_comfy"
# LORA_FILENAME = "Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors"


## This is working well ##

MODEL_ID = "FastVideo/FastWan2.2-TI2V-5B-FullAttn-Diffusers"

#MODEL_ID = "FastDM/Wan2.2-I2V-A14B-Merge-Lightning-V1.0-Diffusers"

## below model has a blury output but it get loaded 
##MODEL_ID ="Runware/Wan2.2-TI2V-5B"

## all these are exp  and not wokring due to memoerty issue 

#MODEL_ID ="Wan-AI/Wan2.2-T2V-A14B-Diffusers"


#MODEL_ID ="linoyts/Wan2.2-T2V-A14B-Diffusers-BF16"

#MODEL_ID = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"



HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/VideoExplain")
from huggingface_hub import HfApi, upload_file
import os
import uuid
import logging

import os
import uuid
import logging
from datetime import datetime
from huggingface_hub import HfApi, upload_file
import subprocess
import tempfile
import logging
import shutil
import os
from huggingface_hub import HfApi, upload_file
from datetime import datetime
import uuid

HF_MODEL = os.environ.get("HF_UPLOAD_REPO", "rahul7star/VideoExplain")

def upscale_and_upload_4k(input_video_path: str, summary_text: str) -> str:
    """
    Upscale a video to 4K and upload it to Hugging Face Hub without replacing the original file.

    Args:
        input_video_path (str): Path to the original video.
        summary_text (str): Text summary to upload alongside the video.

    Returns:
        str: Hugging Face folder path where the video and summary were uploaded.
    """
    logging.info(f"Upscaling video to 4K for upload: {input_video_path}")

    # Create a temporary file for the upscaled video
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_upscaled:
        upscaled_path = tmp_upscaled.name

    # FFmpeg upscale command
    cmd = [
        "ffmpeg",
        "-i", input_video_path,
        "-vf", "scale=3840:2160:flags=lanczos",
        "-c:v", "libx264",
        "-crf", "18",
        "-preset", "slow",
        "-y",
        upscaled_path,
    ]
    try:
        subprocess.run(cmd, check=True, capture_output=True)
        logging.info(f"✅ Upscaled video created at: {upscaled_path}")
    except subprocess.CalledProcessError as e:
        logging.error(f"FFmpeg failed:\n{e.stderr.decode()}")
        raise

    # Create a date-based folder on HF
    today_str = datetime.now().strftime("%Y-%m-%d")
    unique_subfolder = f"Upload-4K-{uuid.uuid4().hex[:8]}"
    hf_folder = f"{today_str}/{unique_subfolder}"

    # Upload video
    video_filename = os.path.basename(input_video_path)
    video_hf_path = f"{hf_folder}/{video_filename}"
    upload_file(
        path_or_fileobj=upscaled_path,
        path_in_repo=video_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded 4K video to HF: {video_hf_path}")

    # Upload summary.txt
    summary_file = tempfile.NamedTemporaryFile(delete=False, suffix=".txt").name
    with open(summary_file, "w", encoding="utf-8") as f:
        f.write(summary_text)

    summary_hf_path = f"{hf_folder}/summary.txt"
    upload_file(
        path_or_fileobj=summary_file,
        path_in_repo=summary_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")

    # Cleanup temporary files
    os.remove(upscaled_path)
    os.remove(summary_file)

    return hf_folder

def upload_to_hf(video_path, summary_text):
    api = HfApi()
    
    # Create a date-based folder (YYYY-MM-DD)
    today_str = datetime.now().strftime("%Y-%m-%d")
    date_folder = today_str
    
    # Generate a unique subfolder for this upload
    unique_subfolder = f"Wan22-Insta-upload_{uuid.uuid4().hex[:8]}"
    hf_folder = f"{date_folder}/{unique_subfolder}"
    logging.info(f"Uploading files to HF folder: {hf_folder} in repo {HF_MODEL}")

    # Upload video
    video_filename = os.path.basename(video_path)
    video_hf_path = f"{hf_folder}/{video_filename}"
    upload_file(
        path_or_fileobj=video_path,
        path_in_repo=video_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded video to HF: {video_hf_path}")

    # Upload summary.txt
    summary_file = "/tmp/summary.txt"
    with open(summary_file, "w", encoding="utf-8") as f:
        f.write(summary_text)

    summary_hf_path = f"{hf_folder}/summary.txt"
    upload_file(
        path_or_fileobj=summary_file,
        path_in_repo=summary_hf_path,
        repo_id=HF_MODEL,
        repo_type="model",
        token=os.environ.get("HUGGINGFACE_HUB_TOKEN"),
    )
    logging.info(f"✅ Uploaded summary to HF: {summary_hf_path}")

    return hf_folder







vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(
    MODEL_ID, vae=vae, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

torch.cuda.empty_cache()

# hold lora for now



# pipe.load_lora_weights(
#    "vrgamedevgirl84/Wan14BT2VFusioniX", 
#    weight_name="FusionX_LoRa/Phantom_Wan_14B_FusionX_LoRA.safetensors", 
#     adapter_name="phantom"
# )





# LORA_REPO_ID = "rahul7star/wan2.2Lora"
# LORA_FILENAME = "wan2.2/Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()






# LORA_REPO_ID = "yeqiu168182/NSFW-22-H-e8"
# LORA_FILENAME = "NSFW-22-H-e8.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()


# LORA_REPO_ID = "Kijai/WanVideo_comfy"
# LORA_FILENAME = "Wan22-Lightning/Wan2.2-Lightning_T2V-A14B-4steps-lora_LOW_fp16.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()
#####################################################




# MOD_VALUE = 32
# DEFAULT_H_SLIDER_VALUE =  512
# DEFAULT_W_SLIDER_VALUE =  896

# # Environment variable check
# IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True"

# # Original limits
# ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1280
# ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1280
# ORIGINAL_MAX_DURATION = round(81/24, 1)  # MAX_FRAMES_MODEL/FIXED_FPS

# # Limited space constants
# LIMITED_MAX_RESOLUTION = 640
# LIMITED_MAX_DURATION = 2.0
# LIMITED_MAX_STEPS = 4

# # Set limits based on environment variable
# if IS_ORIGINAL_SPACE:
#     SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
#     SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
#     MAX_DURATION = LIMITED_MAX_DURATION
#     MAX_STEPS = LIMITED_MAX_STEPS
# else:
#     SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
#     SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
#     MAX_DURATION = ORIGINAL_MAX_DURATION
#     MAX_STEPS = 8

# MAX_SEED = np.iinfo(np.int32).max

# FIXED_FPS = 24
# FIXED_OUTPUT_FPS = 18 # we downspeed the output video as a temporary "trick"
# MIN_FRAMES_MODEL = 8
# MAX_FRAMES_MODEL = 81 


#New math to make it High Res

# MOD_VALUE = 32

# # Defaults for higher-res generation
# DEFAULT_H_SLIDER_VALUE = 768
# DEFAULT_W_SLIDER_VALUE = 1344  # 16:9 friendly and divisible by MOD_VALUE

# # Original Space = Hugging Face space with compute limits
# IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True"

# # Conservative limits for low-end environments
# LIMITED_MAX_RESOLUTION = 640
# LIMITED_MAX_DURATION = 2.0
# LIMITED_MAX_STEPS = 4

# # Generous limits for local or Pro spaces
# ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1536
# ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1536
# ORIGINAL_MAX_DURATION = round(81 / 24, 1)  # 3.4 seconds
# ORIGINAL_MAX_STEPS = 8

# # Use limited or original (generous) settings
# if IS_ORIGINAL_SPACE:
#     SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
#     SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
#     MAX_DURATION = LIMITED_MAX_DURATION
#     MAX_STEPS = LIMITED_MAX_STEPS
# else:
#     SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
#     SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
#     MAX_DURATION = ORIGINAL_MAX_DURATION
#     MAX_STEPS = ORIGINAL_MAX_STEPS

# MAX_SEED = np.iinfo(np.int32).max

# FIXED_FPS = 24
# FIXED_OUTPUT_FPS = 18  # reduce final video FPS to save space
# MIN_FRAMES_MODEL = 8
# MAX_FRAMES_MODEL = 81




# LORA_REPO_ID = "rahul7star/wan2.2Lora"
# LORA_FILENAME = "c0wg1rl.3_wan22-5b-ti2v - e380.safetensors"
# causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
# pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
# pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
# pipe.fuse_lora()




LORA_REPO_ID = "UnifiedHorusRA/Missionary_POV_Wan_2.2_5B_LoRA"
LORA_FILENAME = "missionary-pov-wan2.2_5b-v1.0-vfxai.safetensors"
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()


# Constants
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 896
DEFAULT_W_SLIDER_VALUE = 896
NEW_FORMULA_MAX_AREA = 720 * 1024
SLIDER_MIN_H, SLIDER_MAX_H = 256, 1024
SLIDER_MIN_W, SLIDER_MAX_W = 256, 1024
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 24
MIN_FRAMES_MODEL = 25
MAX_FRAMES_MODEL = 193

FIXED_OUTPUT_FPS = 24


IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "True") == "True"


# Conservative limits for low-end environments
LIMITED_MAX_RESOLUTION = 640
LIMITED_MAX_DURATION = 2.0
LIMITED_MAX_STEPS = 50 #4

# Generous limits for local or Pro spaces
ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1536
ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1536
ORIGINAL_MAX_DURATION = round(81 / 24, 1)  # 3.4 seconds
ORIGINAL_MAX_STEPS = 30 #8

if IS_ORIGINAL_SPACE:
    SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
    SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
    MAX_DURATION = LIMITED_MAX_DURATION
    MAX_STEPS = LIMITED_MAX_STEPS
else:
    SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
    SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
    MAX_DURATION = ORIGINAL_MAX_DURATION
    MAX_STEPS = ORIGINAL_MAX_STEPS

default_prompt_t2v = "cinematic footage, group of pedestrians dancing in the streets of NYC, high quality breakdance, 4K, tiktok video, intricate details, instagram feel, dynamic camera, smooth dance motion, dimly lit, stylish, beautiful faces, smiling, music video"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"

def get_durationold(prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed, 
                   progress):
    if steps > 4 and duration_seconds > 2:
        return 90
    elif steps > 4 or duration_seconds > 2:
        return 75
    else:
        return 60


def get_duration(
       prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed, 
                   progress,
):
    duration = int(duration_seconds) * int(steps) * 2.25 + 5
    
    return duration




@spaces.GPU(duration=get_duration)
def generate_video(prompt, height, width, 
                   negative_prompt=default_negative_prompt, duration_seconds = 2,
                   guidance_scale = 0, steps = 50,
                   seed = 42, randomize_seed = False, 
                   progress=gr.Progress(track_tqdm=True)):
  
    if not prompt or prompt.strip() == "":
        raise gr.Error("Please enter a text prompt. Try to use long and precise descriptions.")

    # Apply limits based on environment variable
    if IS_ORIGINAL_SPACE:
        height = min(height, LIMITED_MAX_RESOLUTION)
        width = min(width, LIMITED_MAX_RESOLUTION)
        duration_seconds = min(duration_seconds, LIMITED_MAX_DURATION)
        steps = min(steps, LIMITED_MAX_STEPS)

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    with torch.inference_mode():
        output_frames_list = pipe(
            prompt=prompt, negative_prompt=negative_prompt,
            height=target_h, width=target_w, num_frames=num_frames,
            guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_OUTPUT_FPS)
    #upscale_and_upload_4k(video_path, prompt)
    return video_path, current_seed
    
    

with gr.Blocks(css="body { max-width: 100vw; overflow-x: hidden; }") as demo:
    gr.HTML('<meta name="viewport" content="width=device-width, initial-scale=1">')
    # ... your other components here ...
    gr.Markdown("# ⚡ InstaVideo - FastWan2.2 Demo")
  
    # Add notice for limited spaces
    if IS_ORIGINAL_SPACE:
        gr.Markdown("⚠️ **This free public demo limits the resolution to 640px, duration to 2s, and inference steps to 4. For full capabilities please duplicate this space.**")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...")
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                with gr.Row():
                    height_input = gr.Slider(
                        minimum=SLIDER_MIN_H, 
                        maximum=SLIDER_MAX_H, 
                        step=MOD_VALUE, 
                        value=min(DEFAULT_H_SLIDER_VALUE, SLIDER_MAX_H), 
                        label=f"Output Height (multiple of {MOD_VALUE})"
                    )
                    width_input = gr.Slider(
                        minimum=SLIDER_MIN_W, 
                        maximum=SLIDER_MAX_W, 
                        step=MOD_VALUE, 
                        value=min(DEFAULT_W_SLIDER_VALUE, SLIDER_MAX_W), 
                        label=f"Output Width (multiple of {MOD_VALUE})"
                    )
                duration_seconds_input = gr.Slider(
                    minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), 
                    maximum=MAX_DURATION, 
                    step=0.1, 
                    value=2, 
                    label="Duration (seconds)", 
                    info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
                )
                steps_slider = gr.Slider(minimum=1, maximum=MAX_STEPS, step=1, value=4, label="Inference Steps") 
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)

            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
    
    ui_inputs = [
        prompt_input, height_input, width_input,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    # Adjust examples based on space limits
    example_configs = [
        ["a majestic eagle soaring through mountain peaks, cinematic aerial view", 896, 512],
        ["a serene ocean wave crashing on a sandy beach at sunset", 448, 832],
        ["a field of flowers swaying in the wind, spring morning light", 512, 896],
    ]
    
    if IS_ORIGINAL_SPACE:
        # Limit example resolutions for limited spaces
        example_configs = [
            [example[0], min(example[1], LIMITED_MAX_RESOLUTION), min(example[2], LIMITED_MAX_RESOLUTION)]
            for example in example_configs
        ]
    
    gr.Examples(
        examples=example_configs,
        inputs=[prompt_input, height_input, width_input], 
        outputs=[video_output, seed_input], 
        fn=generate_video, 
        cache_examples="lazy"
    )

if __name__ == "__main__":
    demo.queue().launch()