File size: 8,671 Bytes
5f364b5
d63bc95
c103ac7
5f364b5
 
c103ac7
5f364b5
f4cf641
8268b44
5f364b5
d63bc95
afdfe21
d63bc95
5f364b5
8268b44
d63bc95
 
8249703
8268b44
5f364b5
afdfe21
 
f4cf641
8268b44
1b75f51
f4cf641
c103ac7
8575388
 
c103ac7
8268b44
 
1e531a7
 
8268b44
 
 
 
d63bc95
8116465
 
d63bc95
5c774ff
b11d0d2
 
 
1b75f51
 
 
 
 
 
 
 
d63bc95
8116465
 
 
1e531a7
d8ad2ca
d63bc95
8268b44
d63bc95
 
d8ad2ca
 
 
d63bc95
d8ad2ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d63bc95
d8ad2ca
 
 
 
 
 
 
d63bc95
 
f4cf641
8268b44
 
1e531a7
8268b44
 
 
12d6cf5
afdfe21
5f364b5
d63bc95
8268b44
 
 
1d3a31b
5f364b5
 
 
1e531a7
54b40a7
5f364b5
 
d63bc95
 
5f364b5
c103ac7
d63bc95
8268b44
8575388
f4cf641
8268b44
 
 
f4cf641
 
 
8575388
8268b44
5f364b5
 
c103ac7
8268b44
 
 
d63bc95
8116465
8268b44
f4cf641
54b40a7
5f364b5
 
8268b44
d63bc95
 
 
5f364b5
d63bc95
5f364b5
 
 
d8ad2ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
from diffusers import AutoencoderKLWan, WanTextToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
import random

MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors"

vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanTextToVideoPipeline.from_pretrained(
    MODEL_ID, vae=vae, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()

MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 896

SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81 

default_prompt_t2v = "a beautiful sunset over mountains, cinematic, smooth camera movement"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"

def get_duration(prompt, height, width, 
                   negative_prompt, duration_seconds,
                   guidance_scale, steps,
                   seed, randomize_seed, 
                   progress):
    if steps > 4 and duration_seconds > 2:
        return 90
    elif steps > 4 or duration_seconds > 2:
        return 75
    else:
        return 60

@spaces.GPU(duration=get_duration)
def generate_video(prompt, height, width, 
                   negative_prompt=default_negative_prompt, duration_seconds = 2,
                   guidance_scale = 1, steps = 4,
                   seed = 42, randomize_seed = False, 
                   progress=gr.Progress(track_tqdm=True)):
    """
    Generate a video from a text prompt using the Wan 2.1 T2V model with CausVid LoRA.
    
    This function takes a text prompt and generates a video based on the provided
    prompt and parameters. It uses the Wan 2.1 1.3B Text-to-Video model with CausVid LoRA
    for fast generation in 4-8 steps.
    
    Args:
        prompt (str): Text prompt describing the desired video content.
        height (int): Target height for the output video. Will be adjusted to multiple of MOD_VALUE (32).
        width (int): Target width for the output video. Will be adjusted to multiple of MOD_VALUE (32).
        negative_prompt (str, optional): Negative prompt to avoid unwanted elements. 
            Defaults to default_negative_prompt (contains unwanted visual artifacts).
        duration_seconds (float, optional): Duration of the generated video in seconds.
            Defaults to 2. Clamped between MIN_FRAMES_MODEL/FIXED_FPS and MAX_FRAMES_MODEL/FIXED_FPS.
        guidance_scale (float, optional): Controls adherence to the prompt. Higher values = more adherence.
            Defaults to 1.0. Range: 0.0-20.0.
        steps (int, optional): Number of inference steps. More steps = higher quality but slower.
            Defaults to 4. Range: 1-30.
        seed (int, optional): Random seed for reproducible results. Defaults to 42.
            Range: 0 to MAX_SEED (2147483647).
        randomize_seed (bool, optional): Whether to use a random seed instead of the provided seed.
            Defaults to False.
        progress (gr.Progress, optional): Gradio progress tracker. Defaults to gr.Progress(track_tqdm=True).
    
    Returns:
        tuple: A tuple containing:
            - video_path (str): Path to the generated video file (.mp4)
            - current_seed (int): The seed used for generation (useful when randomize_seed=True)
    
    Raises:
        gr.Error: If prompt is empty or None.
    
    Note:
        - Frame count is calculated as duration_seconds * FIXED_FPS (24)
        - Output dimensions are adjusted to be multiples of MOD_VALUE (32)
        - The function uses GPU acceleration via the @spaces.GPU decorator
        - Generation time varies based on steps and duration (see get_duration function)
    """
    if not prompt or prompt.strip() == "":
        raise gr.Error("Please enter a text prompt.")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    with torch.inference_mode():
        output_frames_list = pipe(
            prompt=prompt, negative_prompt=negative_prompt,
            height=target_h, width=target_w, num_frames=num_frames,
            guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    return video_path, current_seed

with gr.Blocks() as demo:
    gr.Markdown("# Fast 4 steps Wan 2.1 T2V (1.3B) with CausVid LoRA")
    gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...")
            duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                with gr.Row():
                    height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
                    width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps") 
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)

            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)
    
    ui_inputs = [
        prompt_input, height_input, width_input,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    gr.Examples(
        examples=[ 
            ["a majestic eagle soaring through mountain peaks, cinematic aerial view", 896, 512],
            ["a serene ocean wave crashing on a sandy beach at sunset", 448, 832],
            ["a field of flowers swaying in the wind, spring morning light", 512, 896],
        ],
        inputs=[prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
    )

if __name__ == "__main__":
    demo.queue().launch(mcp_server=True)