import importlib.metadata import math from typing import Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F try: from flash_attn import flash_attn_qkvpacked_func, flash_attn_kvpacked_func, flash_attn_varlen_kvpacked_func from flash_attn.bert_padding import index_first_axis except ImportError: flash_attn_qkvpacked_func, flash_attn_kvpacked_func, flash_attn_varlen_kvpacked_func = None, None, None index_first_axis = None from packaging import version from transformers.utils.import_utils import _is_package_available from .norm_layers import get_norm_layer def reshape_for_broadcast(freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], x: torch.Tensor, head_first=False): """ Reshape frequency tensor for broadcasting it with another tensor. This function reshapes the frequency tensor to have the same shape as the target tensor 'x' for the purpose of broadcasting the frequency tensor during element-wise operations. Notes: When using FlashMHAModified, head_first should be False. When using Attention, head_first should be True. Args: freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped. x (torch.Tensor): Target tensor for broadcasting compatibility. head_first (bool): head dimension first (except batch dim) or not. Returns: torch.Tensor: Reshaped frequency tensor. Raises: AssertionError: If the frequency tensor doesn't match the expected shape. AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions. """ ndim = x.ndim assert 0 <= 1 < ndim if isinstance(freqs_cis, tuple): # freqs_cis: (cos, sin) in real space if head_first: assert freqs_cis[0].shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}' shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] else: assert freqs_cis[0].shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}' shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape) else: # freqs_cis: values in complex space if head_first: assert freqs_cis.shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}' shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] else: assert freqs_cis.shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}' shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return freqs_cis.view(*shape) def rotate_half(x): x_real, x_imag = x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] return torch.stack([-x_imag, x_real], dim=-1).flatten(3) def apply_rotary_emb( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], head_first: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are returned as real tensors. Args: xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply rotary embeddings. [B, S, H, D] freqs_cis (torch.Tensor or tuple): Precomputed frequency tensor for complex exponential. head_first (bool): head dimension first (except batch dim) or not. Returns: Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. """ xk_out = None if isinstance(freqs_cis, tuple): cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D] cos, sin = cos.to(xq.device), sin.to(xq.device) # real * cos - imag * sin # imag * cos + real * sin xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq) xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk) else: # view_as_complex will pack [..., D/2, 2](real) to [..., D/2](complex) xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [B, S, H, D//2] freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device) # [S, D//2] --> [1, S, 1, D//2] # (real, imag) * (cos, sin) = (real * cos - imag * sin, imag * cos + real * sin) # view_as_real will expand [..., D/2](complex) to [..., D/2, 2](real) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # [B, S, H, D//2] xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk) return xq_out, xk_out class BasicAttentionLayer(nn.Module): def __init__(self, attn_mode='flash', deterministic=False): super().__init__() self.attn_mode = attn_mode self.deterministic = deterministic def set_attn_mode(self, new_mode): self.attn_mode = new_mode def enable_deterministic(self): self.deterministic = True def disable_deterministic(self): self.deterministic = False MEMORY_LAYOUT = { "self_flash": ( lambda x: x, lambda x: x, ), "cross_flash": ( lambda x: x, lambda x: x, ), "torch": ( lambda x: x.transpose(1, 2), lambda x: x.transpose(1, 2), ), "vanilla": ( lambda x: x.transpose(1, 2), lambda x: x.transpose(1, 2), ), } # Copyed from https://github.com/huggingface/transformers/blob/b873234cb649a24865021f0d598627ce2b24d34a/src/transformers/modeling_flash_attention_utils.py#L33C1-L57C6 def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]: """ Retrieves indexing data required to repad unpadded (ragged) tensors. Arguments: attention_mask (`torch.Tensor`): Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid. Return: indices (`torch.Tensor): The indices of non-masked tokens from the flattened input sequence. cu_seqlens (`torch.Tensor`): The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,). max_seqlen_in_batch (`int`): Maximum sequence length in batch. """ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copyed from https://github.com/huggingface/transformers/blob/b873234cb649a24865021f0d598627ce2b24d34a/src/transformers/utils/import_utils.py#L822 def is_flash_attn_greater_or_equal(library_version: str): if not _is_package_available("flash_attn"): return False return version.parse(importlib.metadata.version("flash_attn")) >= version.parse(library_version) def get_kv_seqlens_with_mask(attn_mask, k, v): indices_k, cu_seqlens_k, max_seqlen_k = _get_unpad_data(attn_mask) b, s1, a, d = k.shape k = index_first_axis(k.reshape(b * s1, a, d), indices_k) v = index_first_axis(v.reshape(b * s1, a, d), indices_k) kv = torch.stack([k, v], dim=1) return cu_seqlens_k, max_seqlen_k, kv def get_q_seqlens(q): bs, s, a, d = q.shape cu_seqlens_q = torch.arange(0, (bs + 1) * s, step=s, dtype=torch.int32, device=q.device) q = q.reshape(bs * s, a, d) return cu_seqlens_q, s, q def attention(q, k, v, mode, drop_rate=0, attn_mask=None, causal=False, deterministic=False, cu_seqlens=None, max_seqlen=None, cu_seqlens_k=None, max_seqlen_k=None): """ Perform QKV self attention. Args: q (torch.Tensor): Query tensor with shape [b, s, a, d], where a is the number of heads. k (torch.Tensor): Key tensor with shape [b, s1, a, d] v (torch.Tensor): Value tensor with shape [b, s1, a, d] mode (str): Attention mode. Choose from 'self_flash', 'cross_flash', 'torch', and 'vanilla'. drop_rate (float): Dropout rate in attention map. (default: 0) attn_mask (torch.Tensor): Attention mask with shape [b, s1] (cross_attn), or [b, a, s, s1] (torch or vanilla). (default: None) causal (bool): Whether to use causal attention. (default: False) deterministic (bool): Whether to use deterministic attention. (default: False) cu_seqlens (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into q. max_seqlen (int): The maximum sequence length in the batch of q. cu_seqlens_k (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch, used to index into kv. max_seqlen_k (int): The maximum sequence length in the batch of k and v. Returns: torch.Tensor: Output tensor after self attention with shape [b, s, ad] """ pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode] q = pre_attn_layout(q) k = pre_attn_layout(k) v = pre_attn_layout(v) if mode == 'torch': if attn_mask is not None and attn_mask.dtype != torch.bool: attn_mask = attn_mask.to(q.dtype) x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal) elif mode == 'vanilla': scale_factor = 1 / math.sqrt(q.size(-1)) b, a, s, _ = q.shape s1 = k.size(2) attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device) if causal: # Only applied to self attention assert attn_mask is None, "Causal mask and attn_mask cannot be used together" temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(diagonal=0) attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf")) attn_bias.to(q.dtype) if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) else: attn_bias += attn_mask attn = (q @ k.transpose(-2, -1)) * scale_factor attn += attn_bias attn = attn.softmax(dim=-1) attn = torch.dropout(attn, p=drop_rate, train=True) x = attn @ v else: raise NotImplementedError(f'Unsupported attention mode: {mode}') x = post_attn_layout(x) b, s, a, d = x.shape out = x.reshape(b, s, -1) return out class SelfAttentionLayer(BasicAttentionLayer): def __init__(self, dim, num_heads, qkv_bias=True, qk_norm=True, attn_drop=0, proj_drop=0, dtype=None, device=None, norm_type='layer', attn_mode='self_flash', deterministic=False, ) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__(attn_mode, deterministic) self.dim = dim self.num_heads = num_heads assert self.dim % num_heads == 0, "dim must be divisible by num_heads" self.head_dim = self.dim // num_heads self.attn_drop = attn_drop # This assertion is aligned with flash attention assert ( self.head_dim % 8 == 0 and self.head_dim <= 128 ), "Only support head_dim <= 128 and divisible by 8" self.Wqkv = nn.Linear(dim, dim * 3, bias=qkv_bias, **factory_kwargs) norm_layer = get_norm_layer(norm_type) self.q_norm = ( norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() ) self.k_norm = ( norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() ) self.out_proj = nn.Linear(dim, dim, bias=qkv_bias, **factory_kwargs) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, freqs_cis=None, attn_mask=None): """ Args: x (torch.Tensor): (batch, seq_len, hidden_dim) (where hidden_dim = num heads * head dim) freqs_cis (torch.Tensor, optional): (batch, hidden_dim // 2), RoPE for image attn_mask (torch.Tensor, optional): (batch, seq_len, seq_len), mask for attention """ b, s, d = x.shape # Apply QKV projection qkv = self.Wqkv(x) qkv = qkv.view(b, s, 3, self.num_heads, self.head_dim) # [b, s, 3, a, d] q, k, v = qkv.unbind(dim=2) # [b, s, a, d] # Apply QK-Norm if needed q = self.q_norm(q) k = self.k_norm(k) # Apply RoPE if needed if freqs_cis is not None: qq, kk = apply_rotary_emb(q, k, freqs_cis) assert qq.shape == q.shape and kk.shape == k.shape, \ f'qq: {qq.shape}, q: {q.shape}, kk: {kk.shape}, k: {k.shape}' q, k = qq, kk # Apply self attention context = attention(q, k, v, drop_rate=self.attn_drop if self.training else 0, attn_mask=attn_mask, mode=self.attn_mode, deterministic=self.deterministic, ) out = self.out_proj(context) out = self.proj_drop(out) return out class CrossAttentionLayer(BasicAttentionLayer): def __init__(self, qdim, kdim, num_heads, qkv_bias=True, qk_norm=True, attn_drop=0, proj_drop=0, dtype=None, device=None, norm_type='layer', attn_mode='cross_flash', deterministic=False, ): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__(attn_mode, deterministic) self.qdim = qdim self.kdim = kdim self.num_heads = num_heads assert self.qdim % num_heads == 0, "qdim must be divisible by num_heads" self.head_dim = self.qdim // num_heads self.attn_drop = attn_drop # This assertion is aligned with flash attention assert ( self.head_dim % 8 == 0 and self.head_dim <= 128 ), "Only support head_dim <= 128 and divisible by 8" self.q_proj = nn.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs) self.kv_proj = nn.Linear(kdim, 2 * qdim, bias=qkv_bias, **factory_kwargs) norm_layer = get_norm_layer(norm_type) self.q_norm = ( norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() ) self.k_norm = ( norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() ) self.out_proj = nn.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, y, attn_mask=None): """ Args: x (torch.Tensor): (batch, seq_len, hidden_dim) (where hidden_dim = num heads * head dim) y (torch.Tensor): (batch, seq_len1, hidden_dim1) attn_mask (torch.Tensor): (batch, seq_len1), mask for attention """ b, s, d = x.shape _, s1, d1 = y.shape q = self.q_proj(x).view(b, s, self.num_heads, self.head_dim) kv = self.kv_proj(y).view(b, s1, 2, self.num_heads, self.head_dim) k, v = kv.unbind(dim=2) # Apply QK-Norm if needed q = self.q_norm(q) k = self.k_norm(k) # Apply cross attention context = attention(q, k, v, attn_mask=attn_mask, drop_rate=self.attn_drop if self.training else 0, mode=self.attn_mode, deterministic=self.deterministic, ) out = self.out_proj(context) out = self.proj_drop(out) return out