# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F from torch import nn from einops import rearrange from diffusers.utils import is_torch_version, logging from diffusers.models.activations import get_activation from diffusers.models.attention_processor import SpatialNorm from diffusers.models.attention_processor import Attention from diffusers.models.normalization import AdaGroupNorm from diffusers.models.normalization import RMSNorm logger = logging.get_logger(__name__) # pylint: disable=invalid-name def prepare_causal_attention_mask(n_frame: int, n_hw: int, dtype, device, batch_size: int = None): seq_len = n_frame * n_hw mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device) for i in range(seq_len): i_frame = i // n_hw mask[i, : (i_frame + 1) * n_hw] = 0 if batch_size is not None: mask = mask.unsqueeze(0).expand(batch_size, -1, -1) return mask class CausalConv3d(nn.Module): def __init__( self, chan_in, chan_out, kernel_size: Union[int, Tuple[int, int, int]], stride: Union[int, Tuple[int, int, int]] = 1, dilation: Union[int, Tuple[int, int, int]] = 1, pad_mode = 'replicate', disable_causal=False, **kwargs ): super().__init__() self.pad_mode = pad_mode if disable_causal: padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2) else: padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0) # W, H, T self.time_causal_padding = padding self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride = stride, dilation = dilation, **kwargs) def forward(self, x): x = F.pad(x, self.time_causal_padding, mode=self.pad_mode) return self.conv(x) class CausalAvgPool3d(nn.Module): def __init__( self, kernel_size: Union[int, Tuple[int, int, int]], stride: Union[int, Tuple[int, int, int]], pad_mode = 'replicate', disable_causal=False, **kwargs ): super().__init__() self.pad_mode = pad_mode if disable_causal: padding = (0, 0, 0, 0, 0, 0) else: padding = (0, 0, 0, 0, stride - 1, 0) # W, H, T self.time_causal_padding = padding self.conv = nn.AvgPool3d(kernel_size, stride=stride, ceil_mode=True, **kwargs) self.pad_mode = pad_mode def forward(self, x): x = F.pad(x, self.time_causal_padding, mode=self.pad_mode) return self.conv(x) class UpsampleCausal3D(nn.Module): """A 3D upsampling layer with an optional convolution. Parameters: channels (`int`): number of channels in the inputs and outputs. use_conv (`bool`, default `False`): option to use a convolution. use_conv_transpose (`bool`, default `False`): option to use a convolution transpose. out_channels (`int`, optional): number of output channels. Defaults to `channels`. name (`str`, default `conv`): name of the upsampling 3D layer. """ def __init__( self, channels: int, use_conv: bool = False, use_conv_transpose: bool = False, out_channels: Optional[int] = None, name: str = "conv", kernel_size: Optional[int] = None, padding=1, norm_type=None, eps=None, elementwise_affine=None, bias=True, interpolate=True, upsample_factor=(2, 2, 2), disable_causal=False, ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.use_conv_transpose = use_conv_transpose self.name = name self.interpolate = interpolate self.upsample_factor = upsample_factor self.disable_causal = disable_causal if norm_type == "ln_norm": self.norm = nn.LayerNorm(channels, eps, elementwise_affine) elif norm_type == "rms_norm": self.norm = RMSNorm(channels, eps, elementwise_affine) elif norm_type is None: self.norm = None else: raise ValueError(f"unknown norm_type: {norm_type}") conv = None if use_conv_transpose: assert False, "Not Implement yet" if kernel_size is None: kernel_size = 4 conv = nn.ConvTranspose2d( channels, self.out_channels, kernel_size=kernel_size, stride=2, padding=padding, bias=bias ) elif use_conv: if kernel_size is None: kernel_size = 3 conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias, disable_causal=disable_causal) if name == "conv": self.conv = conv else: self.Conv2d_0 = conv def forward( self, hidden_states: torch.FloatTensor, output_size: Optional[int] = None, scale: float = 1.0, ) -> torch.FloatTensor: assert hidden_states.shape[1] == self.channels if self.norm is not None: assert False, "Not Implement yet" hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) if self.use_conv_transpose: return self.conv(hidden_states) # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 # https://github.com/pytorch/pytorch/issues/86679 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() # if `output_size` is passed we force the interpolation output # size and do not make use of `scale_factor=2` if self.interpolate: B, C, T, H, W = hidden_states.shape if not self.disable_causal: first_h, other_h = hidden_states.split((1, T-1), dim=2) if output_size is None: if T > 1: other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest") first_h = first_h.squeeze(2) first_h = F.interpolate(first_h, scale_factor=self.upsample_factor[1:], mode="nearest") first_h = first_h.unsqueeze(2) else: assert False, "Not Implement yet" other_h = F.interpolate(other_h, size=output_size, mode="nearest") if T > 1: hidden_states = torch.cat((first_h, other_h), dim=2) else: hidden_states = first_h else: hidden_states = F.interpolate(hidden_states, scale_factor=self.upsample_factor, mode="nearest") if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) if self.use_conv: if self.name == "conv": hidden_states = self.conv(hidden_states) else: hidden_states = self.Conv2d_0(hidden_states) return hidden_states class DownsampleCausal3D(nn.Module): """A 3D downsampling layer with an optional convolution. Parameters: channels (`int`): number of channels in the inputs and outputs. use_conv (`bool`, default `False`): option to use a convolution. out_channels (`int`, optional): number of output channels. Defaults to `channels`. padding (`int`, default `1`): padding for the convolution. name (`str`, default `conv`): name of the downsampling 3D layer. """ def __init__( self, channels: int, use_conv: bool = False, out_channels: Optional[int] = None, padding: int = 1, name: str = "conv", kernel_size=3, norm_type=None, eps=None, elementwise_affine=None, bias=True, stride=2, disable_causal=False, ): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.padding = padding stride = stride self.name = name if norm_type == "ln_norm": self.norm = nn.LayerNorm(channels, eps, elementwise_affine) elif norm_type == "rms_norm": self.norm = RMSNorm(channels, eps, elementwise_affine) elif norm_type is None: self.norm = None else: raise ValueError(f"unknown norm_type: {norm_type}") if use_conv: conv = CausalConv3d( self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, disable_causal=disable_causal, bias=bias ) else: raise NotImplementedError if name == "conv": self.Conv2d_0 = conv self.conv = conv elif name == "Conv2d_0": self.conv = conv else: self.conv = conv def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: assert hidden_states.shape[1] == self.channels if self.norm is not None: hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) assert hidden_states.shape[1] == self.channels hidden_states = self.conv(hidden_states) return hidden_states class ResnetBlockCausal3D(nn.Module): r""" A Resnet block. Parameters: in_channels (`int`): The number of channels in the input. out_channels (`int`, *optional*, default to be `None`): The number of output channels for the first conv2d layer. If None, same as `in_channels`. dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. groups_out (`int`, *optional*, default to None): The number of groups to use for the second normalization layer. if set to None, same as `groups`. eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or "ada_group" for a stronger conditioning with scale and shift. kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. use_in_shortcut (`bool`, *optional*, default to `True`): If `True`, add a 1x1 nn.conv2d layer for skip-connection. up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the `conv_shortcut` output. conv_3d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. If None, same as `out_channels`. """ def __init__( self, *, in_channels: int, out_channels: Optional[int] = None, conv_shortcut: bool = False, dropout: float = 0.0, temb_channels: int = 512, groups: int = 32, groups_out: Optional[int] = None, pre_norm: bool = True, eps: float = 1e-6, non_linearity: str = "swish", skip_time_act: bool = False, time_embedding_norm: str = "default", # default, scale_shift, ada_group, spatial kernel: Optional[torch.FloatTensor] = None, output_scale_factor: float = 1.0, use_in_shortcut: Optional[bool] = None, up: bool = False, down: bool = False, conv_shortcut_bias: bool = True, conv_3d_out_channels: Optional[int] = None, disable_causal: bool = False, ): super().__init__() self.pre_norm = pre_norm self.pre_norm = True self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.up = up self.down = down self.output_scale_factor = output_scale_factor self.time_embedding_norm = time_embedding_norm self.skip_time_act = skip_time_act linear_cls = nn.Linear if groups_out is None: groups_out = groups if self.time_embedding_norm == "ada_group": self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) elif self.time_embedding_norm == "spatial": self.norm1 = SpatialNorm(in_channels, temb_channels) else: self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1, disable_causal=disable_causal) if temb_channels is not None: if self.time_embedding_norm == "default": self.time_emb_proj = linear_cls(temb_channels, out_channels) elif self.time_embedding_norm == "scale_shift": self.time_emb_proj = linear_cls(temb_channels, 2 * out_channels) elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": self.time_emb_proj = None else: raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") else: self.time_emb_proj = None if self.time_embedding_norm == "ada_group": self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) elif self.time_embedding_norm == "spatial": self.norm2 = SpatialNorm(out_channels, temb_channels) else: self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) self.dropout = torch.nn.Dropout(dropout) conv_3d_out_channels = conv_3d_out_channels or out_channels self.conv2 = CausalConv3d(out_channels, conv_3d_out_channels, kernel_size=3, stride=1, disable_causal=disable_causal) self.nonlinearity = get_activation(non_linearity) self.upsample = self.downsample = None if self.up: self.upsample = UpsampleCausal3D(in_channels, use_conv=False, disable_causal=disable_causal) elif self.down: self.downsample = DownsampleCausal3D(in_channels, use_conv=False, disable_causal=disable_causal, name="op") self.use_in_shortcut = self.in_channels != conv_3d_out_channels if use_in_shortcut is None else use_in_shortcut self.conv_shortcut = None if self.use_in_shortcut: self.conv_shortcut = CausalConv3d( in_channels, conv_3d_out_channels, kernel_size=1, stride=1, disable_causal=disable_causal, bias=conv_shortcut_bias, ) def forward( self, input_tensor: torch.FloatTensor, temb: torch.FloatTensor, scale: float = 1.0, ) -> torch.FloatTensor: hidden_states = input_tensor if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": hidden_states = self.norm1(hidden_states, temb) else: hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) if self.upsample is not None: # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: input_tensor = input_tensor.contiguous() hidden_states = hidden_states.contiguous() input_tensor = ( self.upsample(input_tensor, scale=scale) ) hidden_states = ( self.upsample(hidden_states, scale=scale) ) elif self.downsample is not None: input_tensor = ( self.downsample(input_tensor, scale=scale) ) hidden_states = ( self.downsample(hidden_states, scale=scale) ) hidden_states = self.conv1(hidden_states) if self.time_emb_proj is not None: if not self.skip_time_act: temb = self.nonlinearity(temb) temb = ( self.time_emb_proj(temb, scale)[:, :, None, None] ) if temb is not None and self.time_embedding_norm == "default": hidden_states = hidden_states + temb if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": hidden_states = self.norm2(hidden_states, temb) else: hidden_states = self.norm2(hidden_states) if temb is not None and self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.conv2(hidden_states) if self.conv_shortcut is not None: input_tensor = ( self.conv_shortcut(input_tensor) ) output_tensor = (input_tensor + hidden_states) / self.output_scale_factor return output_tensor def get_down_block3d( down_block_type: str, num_layers: int, in_channels: int, out_channels: int, temb_channels: int, add_downsample: bool, downsample_stride: int, resnet_eps: float, resnet_act_fn: str, transformer_layers_per_block: int = 1, num_attention_heads: Optional[int] = None, resnet_groups: Optional[int] = None, cross_attention_dim: Optional[int] = None, downsample_padding: Optional[int] = None, dual_cross_attention: bool = False, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, resnet_time_scale_shift: str = "default", attention_type: str = "default", resnet_skip_time_act: bool = False, resnet_out_scale_factor: float = 1.0, cross_attention_norm: Optional[str] = None, attention_head_dim: Optional[int] = None, downsample_type: Optional[str] = None, dropout: float = 0.0, disable_causal: bool = False, ): # If attn head dim is not defined, we default it to the number of heads if attention_head_dim is None: logger.warn( f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}." ) attention_head_dim = num_attention_heads down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type if down_block_type == "DownEncoderBlockCausal3D": return DownEncoderBlockCausal3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, dropout=dropout, add_downsample=add_downsample, downsample_stride=downsample_stride, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, disable_causal=disable_causal, ) raise ValueError(f"{down_block_type} does not exist.") def get_up_block3d( up_block_type: str, num_layers: int, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, add_upsample: bool, upsample_scale_factor: Tuple, resnet_eps: float, resnet_act_fn: str, resolution_idx: Optional[int] = None, transformer_layers_per_block: int = 1, num_attention_heads: Optional[int] = None, resnet_groups: Optional[int] = None, cross_attention_dim: Optional[int] = None, dual_cross_attention: bool = False, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, resnet_time_scale_shift: str = "default", attention_type: str = "default", resnet_skip_time_act: bool = False, resnet_out_scale_factor: float = 1.0, cross_attention_norm: Optional[str] = None, attention_head_dim: Optional[int] = None, upsample_type: Optional[str] = None, dropout: float = 0.0, disable_causal: bool = False, ) -> nn.Module: # If attn head dim is not defined, we default it to the number of heads if attention_head_dim is None: logger.warn( f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}." ) attention_head_dim = num_attention_heads up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type if up_block_type == "UpDecoderBlockCausal3D": return UpDecoderBlockCausal3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, resolution_idx=resolution_idx, dropout=dropout, add_upsample=add_upsample, upsample_scale_factor=upsample_scale_factor, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, temb_channels=temb_channels, disable_causal=disable_causal, ) raise ValueError(f"{up_block_type} does not exist.") class UNetMidBlockCausal3D(nn.Module): """ A 3D UNet mid-block [`UNetMidBlockCausal3D`] with multiple residual blocks and optional attention blocks. Args: in_channels (`int`): The number of input channels. temb_channels (`int`): The number of temporal embedding channels. dropout (`float`, *optional*, defaults to 0.0): The dropout rate. num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. resnet_time_scale_shift (`str`, *optional*, defaults to `default`): The type of normalization to apply to the time embeddings. This can help to improve the performance of the model on tasks with long-range temporal dependencies. resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. resnet_groups (`int`, *optional*, defaults to 32): The number of groups to use in the group normalization layers of the resnet blocks. attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks. resnet_pre_norm (`bool`, *optional*, defaults to `True`): Whether to use pre-normalization for the resnet blocks. add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. attention_head_dim (`int`, *optional*, defaults to 1): Dimension of a single attention head. The number of attention heads is determined based on this value and the number of input channels. output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. Returns: `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, in_channels, height, width)`. """ def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", # default, spatial resnet_act_fn: str = "swish", resnet_groups: int = 32, attn_groups: Optional[int] = None, resnet_pre_norm: bool = True, add_attention: bool = True, attention_head_dim: int = 1, output_scale_factor: float = 1.0, disable_causal: bool = False, causal_attention: bool = False, ): super().__init__() resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) self.add_attention = add_attention self.causal_attention = causal_attention if attn_groups is None: attn_groups = resnet_groups if resnet_time_scale_shift == "default" else None # there is always at least one resnet resnets = [ ResnetBlockCausal3D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, disable_causal=disable_causal, ) ] attentions = [] if attention_head_dim is None: logger.warn( f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}." ) attention_head_dim = in_channels for _ in range(num_layers): if self.add_attention: #assert False, "Not implemented yet" attentions.append( Attention( in_channels, heads=in_channels // attention_head_dim, dim_head=attention_head_dim, rescale_output_factor=output_scale_factor, eps=resnet_eps, norm_num_groups=attn_groups, spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, residual_connection=True, bias=True, upcast_softmax=True, _from_deprecated_attn_block=True, ) ) else: attentions.append(None) resnets.append( ResnetBlockCausal3D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, disable_causal=disable_causal, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) def forward(self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None) -> torch.FloatTensor: hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet in zip(self.attentions, self.resnets[1:]): if attn is not None: B, C, T, H, W = hidden_states.shape hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c") if self.causal_attention: attention_mask = prepare_causal_attention_mask(T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B) else: attention_mask = None hidden_states = attn(hidden_states, temb=temb, attention_mask=attention_mask) hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W) hidden_states = resnet(hidden_states, temb) return hidden_states class DownEncoderBlockCausal3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor: float = 1.0, add_downsample: bool = True, downsample_stride: int = 2, downsample_padding: int = 1, disable_causal: bool = False, ): super().__init__() resnets = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlockCausal3D( in_channels=in_channels, out_channels=out_channels, temb_channels=None, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, disable_causal=disable_causal, ) ) self.resnets = nn.ModuleList(resnets) if add_downsample: self.downsamplers = nn.ModuleList( [ DownsampleCausal3D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op", stride=downsample_stride, disable_causal=disable_causal, ) ] ) else: self.downsamplers = None def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor: for resnet in self.resnets: hidden_states = resnet(hidden_states, temb=None, scale=scale) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states, scale) return hidden_states class UpDecoderBlockCausal3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, resolution_idx: Optional[int] = None, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", # default, spatial resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor: float = 1.0, add_upsample: bool = True, upsample_scale_factor = (2, 2, 2), temb_channels: Optional[int] = None, disable_causal: bool = False, ): super().__init__() resnets = [] for i in range(num_layers): input_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlockCausal3D( in_channels=input_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, disable_causal=disable_causal, ) ) self.resnets = nn.ModuleList(resnets) if add_upsample: self.upsamplers = nn.ModuleList( [ UpsampleCausal3D( out_channels, use_conv=True, out_channels=out_channels, upsample_factor=upsample_scale_factor, disable_causal=disable_causal ) ] ) else: self.upsamplers = None self.resolution_idx = resolution_idx def forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0 ) -> torch.FloatTensor: for resnet in self.resnets: hidden_states = resnet(hidden_states, temb=temb, scale=scale) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) return hidden_states