import os import torch import datetime import torch.distributed as dist from typing import Any, Tuple from torch import Tensor from flash_attn.flash_attn_interface import flash_attn_varlen_func class COMM_INFO: def __init__(self): self.group = None self.sp_size = 1 self.global_rank = 0 self.rank_within_group = 0 self.group_id = 0 nccl_info = COMM_INFO() _SEQUENCE_PARALLEL_STATE = False def get_cu_seqlens(text_mask, img_len): """Calculate cu_seqlens_q, cu_seqlens_kv using text_mask and img_len Args: text_mask (torch.Tensor): the mask of text img_len (int): the length of image Returns: torch.Tensor: the calculated cu_seqlens for flash attention """ batch_size = text_mask.shape[0] text_len = text_mask.sum(dim=1) max_len = text_mask.shape[1] + img_len cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda") for i in range(batch_size): s = text_len[i] + img_len s1 = i * max_len + s s2 = (i + 1) * max_len cu_seqlens[2 * i + 1] = s1 cu_seqlens[2 * i + 2] = s2 return cu_seqlens def initialize_sequence_parallel_state(sequence_parallel_size): global _SEQUENCE_PARALLEL_STATE if sequence_parallel_size > 1: _SEQUENCE_PARALLEL_STATE = True initialize_sequence_parallel_group(sequence_parallel_size) else: nccl_info.sp_size = 1 nccl_info.global_rank = int(os.getenv("RANK", "0")) nccl_info.rank_within_group = 0 nccl_info.group_id = int(os.getenv("RANK", "0")) def get_sequence_parallel_state(): return _SEQUENCE_PARALLEL_STATE def initialize_sequence_parallel_group(sequence_parallel_size): """Initialize the sequence parallel group.""" rank = int(os.getenv("RANK", "0")) world_size = int(os.getenv("WORLD_SIZE", "1")) assert ( world_size % sequence_parallel_size == 0 ), "world_size must be divisible by sequence_parallel_size, but got world_size: {}, sequence_parallel_size: {}".format( world_size, sequence_parallel_size) nccl_info.sp_size = sequence_parallel_size nccl_info.global_rank = rank num_sequence_parallel_groups: int = world_size // sequence_parallel_size for i in range(num_sequence_parallel_groups): ranks = range(i * sequence_parallel_size, (i + 1) * sequence_parallel_size) group = dist.new_group(ranks) if rank in ranks: nccl_info.group = group nccl_info.rank_within_group = rank - i * sequence_parallel_size nccl_info.group_id = i def initialize_distributed(seed): local_rank = int(os.getenv("RANK", 0)) world_size = int(os.getenv("WORLD_SIZE", 1)) torch.cuda.set_device(local_rank) dist.init_process_group(backend="nccl", init_method="env://", timeout=datetime.timedelta(seconds=2**31-1), world_size=world_size, rank=local_rank) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) initialize_sequence_parallel_state(world_size) def _all_to_all_4D(input: torch.tensor, scatter_idx: int = 2, gather_idx: int = 1, group=None) -> torch.tensor: """ all-to-all for QKV Args: input (torch.tensor): a tensor sharded along dim scatter dim scatter_idx (int): default 1 gather_idx (int): default 2 group : torch process group Returns: torch.tensor: resharded tensor (bs, seqlen/P, hc, hs) """ assert (input.dim() == 4), f"input must be 4D tensor, got {input.dim()} and shape {input.shape}" seq_world_size = dist.get_world_size(group) if scatter_idx == 2 and gather_idx == 1: # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, hc, hs) output: (bs, seqlen, hc/P, hs) bs, shard_seqlen, hc, hs = input.shape seqlen = shard_seqlen * seq_world_size shard_hc = hc // seq_world_size # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! # (bs, seqlen/P, hc, hs) -reshape-> (bs, seq_len/P, P, hc/P, hs) -transpose(0,2)-> (P, seq_len/P, bs, hc/P, hs) input_t = (input.reshape(bs, shard_seqlen, seq_world_size, shard_hc, hs).transpose(0, 2).contiguous()) output = torch.empty_like(input_t) # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single # (P, seq_len/P, bs, hc/P, hs) scatter seqlen -all2all-> (P, seq_len/P, bs, hc/P, hs) scatter head if seq_world_size > 1: dist.all_to_all_single(output, input_t, group=group) torch.cuda.synchronize() else: output = input_t # if scattering the seq-dim, transpose the heads back to the original dimension output = output.reshape(seqlen, bs, shard_hc, hs) # (seq_len, bs, hc/P, hs) -reshape-> (bs, seq_len, hc/P, hs) output = output.transpose(0, 1).contiguous().reshape(bs, seqlen, shard_hc, hs) return output elif scatter_idx == 1 and gather_idx == 2: # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs) bs, seqlen, shard_hc, hs = input.shape hc = shard_hc * seq_world_size shard_seqlen = seqlen // seq_world_size seq_world_size = dist.get_world_size(group) # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! # (bs, seqlen, hc/P, hs) -reshape-> (bs, P, seq_len/P, hc/P, hs) -transpose(0, 3)-> (hc/P, P, seqlen/P, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, bs, hs) input_t = (input.reshape(bs, seq_world_size, shard_seqlen, shard_hc, hs).transpose(0, 3).transpose(0, 1).contiguous().reshape(seq_world_size, shard_hc, shard_seqlen, bs, hs)) output = torch.empty_like(input_t) # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single # (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head if seq_world_size > 1: dist.all_to_all_single(output, input_t, group=group) torch.cuda.synchronize() else: output = input_t # if scattering the seq-dim, transpose the heads back to the original dimension output = output.reshape(hc, shard_seqlen, bs, hs) # (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs) output = output.transpose(0, 2).contiguous().reshape(bs, shard_seqlen, hc, hs) return output else: raise RuntimeError("scatter_idx must be 1 or 2 and gather_idx must be 1 or 2") class SeqAllToAll4D(torch.autograd.Function): @staticmethod def forward( ctx: Any, group: dist.ProcessGroup, input: Tensor, scatter_idx: int, gather_idx: int, ) -> Tensor: ctx.group = group ctx.scatter_idx = scatter_idx ctx.gather_idx = gather_idx return _all_to_all_4D(input, scatter_idx, gather_idx, group=group) @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]: return ( None, SeqAllToAll4D.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx), None, None, ) def all_to_all_4D( input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1, ): return SeqAllToAll4D.apply(nccl_info.group, input_, scatter_dim, gather_dim) def _all_to_all( input_: torch.Tensor, world_size: int, group: dist.ProcessGroup, scatter_dim: int, gather_dim: int, ): input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)] output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)] dist.all_to_all(output_list, input_list, group=group) return torch.cat(output_list, dim=gather_dim).contiguous() class _AllToAll(torch.autograd.Function): """All-to-all communication. Args: input_: input matrix process_group: communication group scatter_dim: scatter dimension gather_dim: gather dimension """ @staticmethod def forward(ctx, input_, process_group, scatter_dim, gather_dim): ctx.process_group = process_group ctx.scatter_dim = scatter_dim ctx.gather_dim = gather_dim ctx.world_size = dist.get_world_size(process_group) output = _all_to_all(input_, ctx.world_size, process_group, scatter_dim, gather_dim) return output @staticmethod def backward(ctx, grad_output): grad_output = _all_to_all( grad_output, ctx.world_size, ctx.process_group, ctx.gather_dim, ctx.scatter_dim, ) return ( grad_output, None, None, None, ) def all_to_all( input_: torch.Tensor, scatter_dim: int = 2, gather_dim: int = 1, ): return _AllToAll.apply(input_, nccl_info.group, scatter_dim, gather_dim) class _AllGather(torch.autograd.Function): """All-gather communication with autograd support. Args: input_: input tensor dim: dimension along which to concatenate """ @staticmethod def forward(ctx, input_, dim): ctx.dim = dim world_size = nccl_info.sp_size group = nccl_info.group input_size = list(input_.size()) ctx.input_size = input_size[dim] tensor_list = [torch.empty_like(input_) for _ in range(world_size)] input_ = input_.contiguous() dist.all_gather(tensor_list, input_, group=group) output = torch.cat(tensor_list, dim=dim) return output @staticmethod def backward(ctx, grad_output): world_size = nccl_info.sp_size rank = nccl_info.rank_within_group dim = ctx.dim input_size = ctx.input_size sizes = [input_size] * world_size grad_input_list = torch.split(grad_output, sizes, dim=dim) grad_input = grad_input_list[rank] return grad_input, None def all_gather(input_: torch.Tensor, dim: int = 1): """Performs an all-gather operation on the input tensor along the specified dimension. Args: input_ (torch.Tensor): Input tensor of shape [B, H, S, D]. dim (int, optional): Dimension along which to concatenate. Defaults to 1. Returns: torch.Tensor: Output tensor after all-gather operation, concatenated along 'dim'. """ return _AllGather.apply(input_, dim) def parallel_attention(q, k, v, img_q_len, img_kv_len, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv,): """ img_q_len,img_kv_len: 32256 text_mask: 2x256 query: [2, 32256, 24, 128]) encoder_query: [2, 256, 24, 128] """ query, encoder_query = q key, encoder_key = k value, encoder_value = v rank = torch.distributed.get_rank() if get_sequence_parallel_state(): query = all_to_all_4D(query, scatter_dim=2, gather_dim=1) # [2, 32256, 24, 128] key = all_to_all_4D(key, scatter_dim=2, gather_dim=1) value = all_to_all_4D(value, scatter_dim=2, gather_dim=1) def shrink_head(encoder_state, dim): local_heads = encoder_state.shape[dim] // nccl_info.sp_size return encoder_state.narrow(dim, nccl_info.rank_within_group * local_heads, local_heads) encoder_query = shrink_head(encoder_query, dim=2) encoder_key = shrink_head(encoder_key, dim=2) encoder_value = shrink_head(encoder_value, dim=2) sequence_length = query.size(1) # 32256 encoder_sequence_length = encoder_query.size(1) # 256 query = torch.cat([query, encoder_query], dim=1) key = torch.cat([key, encoder_key], dim=1) value = torch.cat([value, encoder_value], dim=1) bsz = query.shape[0] head = query.shape[-2] head_dim = query.shape[-1] query, key, value = [ x.view(x.shape[0] * x.shape[1], *x.shape[2:]) for x in [query, key, value] ] hidden_states = flash_attn_varlen_func( query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, ) # B, S, 3, H, D hidden_states = hidden_states.view(bsz, max_seqlen_q, head, head_dim).contiguous() hidden_states, encoder_hidden_states = hidden_states.split_with_sizes((sequence_length, encoder_sequence_length), dim=1) if get_sequence_parallel_state(): hidden_states = all_to_all_4D(hidden_states, scatter_dim=1, gather_dim=2) encoder_hidden_states = all_gather(encoder_hidden_states, dim=2).contiguous() hidden_states = hidden_states.to(query.dtype) encoder_hidden_states = encoder_hidden_states.to(query.dtype) attn = torch.cat([hidden_states, encoder_hidden_states], dim=1) b, s, _, _= attn.shape attn = attn.reshape(b, s, -1) return attn, None