from typing import List, Tuple, Optional, Union, Dict from einops import rearrange import torch, os import torch.nn as nn import torch.nn.functional as F from diffusers.models import ModelMixin from diffusers.configuration_utils import ConfigMixin, register_to_config from flash_attn.flash_attn_interface import flash_attn_varlen_func from .activation_layers import get_activation_layer from .norm_layers import get_norm_layer from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection from .attn_layers import apply_rotary_emb from .mlp_layers import MLP, MLPEmbedder, FinalLayer from .modulate_layers import ModulateDiT, modulate, apply_gate from .token_refiner import SingleTokenRefiner from .audio_adapters import AudioProjNet2, PerceiverAttentionCA from .parallel_states import ( nccl_info, get_cu_seqlens, get_sequence_parallel_state, parallel_attention, all_gather, ) CPU_OFFLOAD = int(os.environ.get("CPU_OFFLOAD", 0)) DISABLE_SP = int(os.environ.get("DISABLE_SP", 0)) print(f'models: cpu_offload={CPU_OFFLOAD}, DISABLE_SP={DISABLE_SP}') class DoubleStreamBlock(nn.Module): def __init__( self, hidden_size: int, num_heads: int, mlp_width_ratio: float, mlp_act_type: str = 'gelu_tanh', qk_norm: bool = True, qk_norm_type: str = 'rms', qkv_bias: bool = False, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, ): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.deterministic = False self.num_heads = num_heads head_dim = hidden_size // num_heads mlp_hidden_dim = int(hidden_size * mlp_width_ratio) self.img_mod = ModulateDiT(hidden_size, factor=6, act_layer=get_activation_layer("silu"), **factory_kwargs) self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) self.img_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs) qk_norm_layer = get_norm_layer(qk_norm_type) self.img_attn_q_norm = ( qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() ) self.img_attn_k_norm = ( qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() ) self.img_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs) self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) self.img_mlp = MLP( hidden_size, mlp_hidden_dim, act_layer=get_activation_layer(mlp_act_type), bias=True, **factory_kwargs ) self.txt_mod = ModulateDiT(hidden_size, factor=6, act_layer=get_activation_layer("silu"), **factory_kwargs) self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) self.txt_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs) qk_norm_layer = get_norm_layer(qk_norm_type) self.txt_attn_q_norm = ( qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() ) self.txt_attn_k_norm = ( qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() ) self.txt_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs) self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) self.txt_mlp = MLP( hidden_size, mlp_hidden_dim, act_layer=get_activation_layer(mlp_act_type), bias=True, **factory_kwargs ) def enable_deterministic(self): self.deterministic = True def disable_deterministic(self): self.deterministic = False def forward( self, img: torch.Tensor, txt: torch.Tensor, vec: torch.Tensor, cu_seqlens_q: Optional[torch.Tensor] = None, cu_seqlens_kv: Optional[torch.Tensor] = None, max_seqlen_q: Optional[int] = None, max_seqlen_kv: Optional[int] = None, freqs_cis: tuple = None ) -> Tuple[torch.Tensor, torch.Tensor]: img_mod1_shift, img_mod1_scale, img_mod1_gate, img_mod2_shift, img_mod2_scale, img_mod2_gate = ( self.img_mod(vec).chunk(6, dim=-1) ) txt_mod1_shift, txt_mod1_scale, txt_mod1_gate, txt_mod2_shift, txt_mod2_scale, txt_mod2_gate = ( self.txt_mod(vec).chunk(6, dim=-1) ) if CPU_OFFLOAD: torch.cuda.empty_cache() # Prepare image for attention. img_modulated = self.img_norm1(img) img_modulated = modulate(img_modulated, shift=img_mod1_shift, scale=img_mod1_scale) img_qkv = self.img_attn_qkv(img_modulated) if CPU_OFFLOAD: torch.cuda.empty_cache() img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads) # Apply QK-Norm if needed img_q = self.img_attn_q_norm(img_q).to(img_v) img_k = self.img_attn_k_norm(img_k).to(img_v) if CPU_OFFLOAD: torch.cuda.empty_cache() # Apply RoPE if needed. if freqs_cis is not None: img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False) assert img_qq.shape == img_q.shape and img_kk.shape == img_k.shape, \ f'img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}' img_q, img_k = img_qq, img_kk # Prepare txt for attention. txt_modulated = self.txt_norm1(txt) txt_modulated = modulate(txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale) if CPU_OFFLOAD: torch.cuda.empty_cache() txt_qkv = self.txt_attn_qkv(txt_modulated) txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads) # Apply QK-Norm if needed. txt_q = self.txt_attn_q_norm(txt_q).to(txt_v) txt_k = self.txt_attn_k_norm(txt_k).to(txt_v) if CPU_OFFLOAD: torch.cuda.empty_cache() # Run actual attention. q = torch.cat((img_q, txt_q), dim=1) k = torch.cat((img_k, txt_k), dim=1) v = torch.cat((img_v, txt_v), dim=1) # Compute attention. if CPU_OFFLOAD or DISABLE_SP: assert cu_seqlens_q.shape[0] == 2 * img.shape[0] + 1 q, k, v = [ x.view(x.shape[0] * x.shape[1], *x.shape[2:]) for x in [q, k, v] ] attn = flash_attn_varlen_func( q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, ) attn = attn.view(img_k.shape[0], max_seqlen_q, -1).contiguous() else: attn, _ = parallel_attention( (img_q, txt_q), (img_k, txt_k), (img_v, txt_v), img_q_len=img_q.shape[1], img_kv_len=img_k.shape[1], cu_seqlens_q=cu_seqlens_q, cu_seqlens_kv=cu_seqlens_kv, max_seqlen_q=max_seqlen_q, max_seqlen_kv=max_seqlen_kv, ) img_attn, txt_attn = attn[:, :img.shape[1]], attn[:, img.shape[1]:] if CPU_OFFLOAD: torch.cuda.empty_cache() # Calculate the img bloks. img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate) img = img + apply_gate(self.img_mlp(modulate(self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale)), gate=img_mod2_gate) if CPU_OFFLOAD: torch.cuda.empty_cache() # Calculate the txt bloks. txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate) txt = txt + apply_gate(self.txt_mlp(modulate(self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale)), gate=txt_mod2_gate) if CPU_OFFLOAD: torch.cuda.empty_cache() return img, txt class SingleStreamBlock(nn.Module): """ A DiT block with parallel linear layers as described in https://arxiv.org/abs/2302.05442 and adapted modulation interface. """ def __init__( self, hidden_size: int, num_heads: int, mlp_width_ratio: float = 4.0, mlp_act_type: str = 'gelu_tanh', qk_norm: bool = True, qk_norm_type: str = 'rms', qk_scale: float = None, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, ): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.deterministic = False self.hidden_size = hidden_size self.num_heads = num_heads head_dim = hidden_size // num_heads mlp_hidden_dim = int(hidden_size * mlp_width_ratio) self.mlp_hidden_dim = mlp_hidden_dim self.scale = qk_scale or head_dim**-0.5 # qkv and mlp_in self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs) # proj and mlp_out self.linear2 = nn.Linear(hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs) qk_norm_layer = get_norm_layer(qk_norm_type) self.q_norm = ( qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() ) self.k_norm = ( qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() ) self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) self.mlp_act = get_activation_layer(mlp_act_type)() self.modulation = ModulateDiT(hidden_size, factor=3, act_layer=get_activation_layer("silu"), **factory_kwargs) def enable_deterministic(self): self.deterministic = True def disable_deterministic(self): self.deterministic = False def forward( self, x: torch.Tensor, vec: torch.Tensor, txt_len: int, cu_seqlens_q: Optional[torch.Tensor] = None, cu_seqlens_kv: Optional[torch.Tensor] = None, max_seqlen_q: Optional[int] = None, max_seqlen_kv: Optional[int] = None, freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None, ) -> torch.Tensor: mod_shift, mod_scale, mod_gate = ( self.modulation(vec).chunk(3, dim=-1) ) x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale) if CPU_OFFLOAD: torch.cuda.empty_cache() qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads) if CPU_OFFLOAD: torch.cuda.empty_cache() # Apply QK-Norm if needed. q = self.q_norm(q).to(v) k = self.k_norm(k).to(v) if CPU_OFFLOAD: torch.cuda.empty_cache() # Apply RoPE if needed. if freqs_cis is not None: img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :] img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :] img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False) assert img_qq.shape == img_q.shape and img_kk.shape == img_k.shape, \ f'img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}' img_q, img_k = img_qq, img_kk q = torch.cat((img_q, txt_q), dim=1) k = torch.cat((img_k, txt_k), dim=1) if CPU_OFFLOAD: torch.cuda.empty_cache() # Compute attention. if CPU_OFFLOAD or DISABLE_SP: assert cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1, f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}" # [b, s+l, a, d] -> [s+l, b, a, d] q, k, v = [ x.view(x.shape[0] * x.shape[1], *x.shape[2:]) for x in [q, k, v] ] attn = flash_attn_varlen_func( q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, ) attn = attn.view(x.shape[0], max_seqlen_q, -1).contiguous() else: img_v, txt_v = v[:, :-txt_len, :, :], v[:, -txt_len:, :, :] attn, _ = parallel_attention( (img_q, txt_q), (img_k, txt_k), (img_v, txt_v), img_q_len=img_q.shape[1], img_kv_len=img_k.shape[1], cu_seqlens_q=cu_seqlens_q, cu_seqlens_kv=cu_seqlens_kv, max_seqlen_q=max_seqlen_q, max_seqlen_kv=max_seqlen_kv, ) if CPU_OFFLOAD: torch.cuda.empty_cache() tmp = torch.cat((attn, self.mlp_act(mlp)), 2) torch.cuda.empty_cache() output = self.linear2(tmp) else: output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) return x + apply_gate(output, gate=mod_gate) class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin): """ HunyuanVideo Transformer backbone Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline. Reference: [1] Flux.1: https://github.com/black-forest-labs/flux [2] MMDiT: http://arxiv.org/abs/2403.03206, https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py """ @register_to_config def __init__( self, args, patch_size: list = [1,2,2], in_channels: int = 4, # Should be VAE.config.latent_channels. out_channels: int = None, hidden_size: int = 3072, mlp_width_ratio: float = 4.0, mlp_act_type: str = 'gelu_tanh', num_heads: int = 24, depth_double_blocks: int = 19, depth_single_blocks: int = 38, rope_dim_list: List[int] = [16, 56, 56], qkv_bias: bool = True, qk_norm: bool = True, qk_norm_type: str = 'rms', guidance_embed: bool = False, # For modulation. dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, ): factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() # Text projection. Default to linear projection. # Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831 self.text_projection = args.text_projection self.text_states_dim = args.text_states_dim self.use_attention_mask = args.use_attention_mask self.text_states_dim_2 = args.text_states_dim_2 # Now we only use above configs from args. self.patch_size = patch_size self.in_channels = in_channels self.out_channels = in_channels if out_channels is None else out_channels self.unpatchify_channels = self.out_channels self.guidance_embed = guidance_embed self.rope_dim_list = rope_dim_list if hidden_size % num_heads != 0: raise ValueError( f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}" ) pe_dim = hidden_size // num_heads if sum(rope_dim_list) != pe_dim: raise ValueError(f"Got {rope_dim_list} but expected positional dim {pe_dim}") self.hidden_size = hidden_size self.num_heads = num_heads # image projection self.img_in = PatchEmbed( self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs ) self.ref_in = PatchEmbed( self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs ) # text projection if self.text_projection == "linear": self.txt_in = TextProjection( self.text_states_dim, self.hidden_size, get_activation_layer("silu"), **factory_kwargs ) elif self.text_projection == "single_refiner": self.txt_in = SingleTokenRefiner( self.text_states_dim, hidden_size, num_heads, depth=2, **factory_kwargs ) else: raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}") # time modulation self.time_in = TimestepEmbedder( self.hidden_size, get_activation_layer("silu"), **factory_kwargs ) # text modulation self.vector_in = MLPEmbedder( self.text_states_dim_2, self.hidden_size, **factory_kwargs ) # guidance modulation self.guidance_in = TimestepEmbedder( self.hidden_size, get_activation_layer("silu"), **factory_kwargs ) if guidance_embed else None # double blocks self.double_blocks = nn.ModuleList( [ DoubleStreamBlock( self.hidden_size, self.num_heads, mlp_width_ratio=mlp_width_ratio, mlp_act_type=mlp_act_type, qk_norm=qk_norm, qk_norm_type=qk_norm_type, qkv_bias=qkv_bias, **factory_kwargs ) for _ in range(depth_double_blocks) ] ) # single blocks self.single_blocks = nn.ModuleList( [ SingleStreamBlock( self.hidden_size, self.num_heads, mlp_width_ratio=mlp_width_ratio, mlp_act_type=mlp_act_type, qk_norm=qk_norm, qk_norm_type=qk_norm_type, **factory_kwargs ) for _ in range(depth_single_blocks) ] ) self.final_layer = FinalLayer( self.hidden_size, self.patch_size, self.out_channels, get_activation_layer("silu"), **factory_kwargs ) # -------------------- audio_proj_model -------------------- self.audio_proj = AudioProjNet2(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=3072, context_tokens=4) # -------------------- motion-embeder -------------------- self.motion_exp = TimestepEmbedder( self.hidden_size // 4, get_activation_layer("silu"), **factory_kwargs ) self.motion_pose = TimestepEmbedder( self.hidden_size // 4, get_activation_layer("silu"), **factory_kwargs ) self.fps_proj = TimestepEmbedder( self.hidden_size, get_activation_layer("silu"), **factory_kwargs ) self.before_proj = nn.Linear(self.hidden_size, self.hidden_size) # -------------------- audio_insert_model -------------------- self.double_stream_list = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19] self.single_stream_list = [] self.double_stream_map = {str(i): j for j, i in enumerate(self.double_stream_list)} self.single_stream_map = {str(i): j+len(self.double_stream_list) for j, i in enumerate(self.single_stream_list)} self.audio_adapter_blocks = nn.ModuleList([ PerceiverAttentionCA(dim=3072, dim_head=1024, heads=33) for _ in range(len(self.double_stream_list) + len(self.single_stream_list)) ]) def enable_deterministic(self): for block in self.double_blocks: block.enable_deterministic() for block in self.single_blocks: block.enable_deterministic() def disable_deterministic(self): for block in self.double_blocks: block.disable_deterministic() for block in self.single_blocks: block.disable_deterministic() def forward( self, x: torch.Tensor, t: torch.Tensor, # Should be in range(0, 1000). ref_latents: torch.Tensor=None, text_states: torch.Tensor = None, text_mask: torch.Tensor = None, # Now we don't use it. text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation. freqs_cos: Optional[torch.Tensor] = None, freqs_sin: Optional[torch.Tensor] = None, guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000. return_dict: bool = True, is_cache: bool = False, **additional_kwargs, ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: out = {} img = x txt = text_states bsz, _, ot, oh, ow = x.shape tt, th, tw = ot // self.patch_size[0], oh // self.patch_size[1], ow // self.patch_size[2] # Prepare modulation vectors. vec = self.time_in(t) motion_exp_vec = self.motion_exp(additional_kwargs["motion_exp"].view(-1)).view(x.shape[0], -1) # (b, 3072) vec = vec + motion_exp_vec motion_pose_vec = self.motion_pose(additional_kwargs["motion_pose"].view(-1)).view(x.shape[0], -1) # (b, 3072) vec = vec + motion_pose_vec fps_vec = self.fps_proj(additional_kwargs["fps"]) # (b, 3072) vec = vec + fps_vec audio_feature_all = self.audio_proj(additional_kwargs["audio_prompts"]) # text modulation vec = vec + self.vector_in(text_states_2) # guidance modulation if self.guidance_embed: if guidance is None: raise ValueError("Didn't get guidance strength for guidance distilled model.") else: # our timestep_embedding is merged into guidance_in(TimestepEmbedder) vec = vec + self.guidance_in(guidance) if CPU_OFFLOAD: torch.cuda.empty_cache() # Embed image and text. ref_latents_first = ref_latents[:, :, :1].clone() img, shape_mask = self.img_in(img) ref_latents,_ = self.ref_in(ref_latents) ref_latents_first,_ = self.img_in(ref_latents_first) if self.text_projection == "linear": txt = self.txt_in(txt) elif self.text_projection == "single_refiner": # [b, l, h] txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None) else: raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}") img = self.before_proj(ref_latents) + img if CPU_OFFLOAD: torch.cuda.empty_cache() ref_length = ref_latents_first.shape[-2] # [b s c] img = torch.cat([ref_latents_first, img], dim=-2) # t c img_len = img.shape[1] mask_len = img_len - ref_length if additional_kwargs["face_mask"].shape[2] == 1: face_mask = additional_kwargs["face_mask"].repeat(1,1,ot,1,1) # repeat if number of mask frame is 1 else: face_mask = additional_kwargs["face_mask"] face_mask = torch.nn.functional.interpolate(face_mask, size=[ot, shape_mask[-2], shape_mask[-1]], mode="nearest") face_mask = face_mask.view(-1,mask_len,1).repeat(1,1,img.shape[-1]).type_as(img) txt_seq_len = txt.shape[1] img_seq_len = img.shape[1] cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len) cu_seqlens_kv = cu_seqlens_q max_seqlen_q = img_seq_len + txt_seq_len max_seqlen_kv = max_seqlen_q if get_sequence_parallel_state(): sp_size = nccl_info.sp_size sp_rank = nccl_info.rank_within_group assert img.shape[1] % sp_size == 0, f"Cannot split video sequence into ulysses SP ({sp_size}) parts evenly" img = torch.chunk(img, sp_size, dim=1)[sp_rank] freqs_cos = torch.chunk(freqs_cos, sp_size, dim=0)[sp_rank] freqs_sin = torch.chunk(freqs_sin, sp_size, dim=0)[sp_rank] if CPU_OFFLOAD: torch.cuda.empty_cache() freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None # --------------------- Pass through DiT blocks ------------------------ if not is_cache: for layer_num, block in enumerate(self.double_blocks): double_block_args = [img, txt, vec, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, freqs_cis] img, txt = block(*double_block_args) if CPU_OFFLOAD: torch.cuda.empty_cache() """ insert audio feature to img """ if layer_num in self.double_stream_list: if get_sequence_parallel_state(): img = all_gather(img, dim=1) real_img = img[:,ref_length:].clone().view(bsz, ot, -1, 3072) real_ref_img = torch.zeros_like(img[:,:ref_length].clone()) audio_feature_pad = audio_feature_all[:,:1].repeat(1,3,1,1) audio_feature_all_insert = torch.cat([audio_feature_pad, audio_feature_all], dim=1).view(bsz, ot, 16, 3072) double_idx = self.double_stream_map[str(layer_num)] real_img = self.audio_adapter_blocks[double_idx](audio_feature_all_insert, real_img).view(bsz, -1, 3072) img = img + torch.cat((real_ref_img, real_img * face_mask), dim=1) if get_sequence_parallel_state(): sp_size = nccl_info.sp_size sp_rank = nccl_info.rank_within_group assert img.shape[1] % sp_size == 0, f"Cannot split video sequence into ulysses SP ({sp_size}) parts evenly" img = torch.chunk(img, sp_size, dim=1)[sp_rank] # Merge txt and img to pass through single stream blocks. x = torch.cat((img, txt), 1) # Compatible with MMDiT. if len(self.single_blocks) > 0: for layer_num, block in enumerate(self.single_blocks): if layer_num == (len(self.single_blocks) - 1): # self.cache_out = x tmp = x[:, :-txt_seq_len, ...] if get_sequence_parallel_state(): tmp = all_gather(tmp, dim=1) self.cache_out = torch.cat([tmp, x[:, -txt_seq_len:, ...]], dim=1) single_block_args = [x, vec, txt_seq_len, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, (freqs_cos, freqs_sin)] x = block(*single_block_args) if CPU_OFFLOAD: torch.cuda.empty_cache() else: if get_sequence_parallel_state(): sp_size = nccl_info.sp_size sp_rank = nccl_info.rank_within_group tmp, txt = self.cache_out[:, :-txt_seq_len], self.cache_out[:, -txt_seq_len:] tmp = torch.chunk(tmp, sp_size, dim=1)[sp_rank] x = torch.cat([tmp, txt], dim=1) else: x = self.cache_out if len(self.single_blocks) > 0: for layer_num, block in enumerate(self.single_blocks): if layer_num < (len(self.single_blocks) - 1): continue single_block_args = [x, vec, txt_seq_len, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, (freqs_cos, freqs_sin)] x = block(*single_block_args) if CPU_OFFLOAD: torch.cuda.empty_cache() img = x[:, :-txt_seq_len, ...] if get_sequence_parallel_state(): img = all_gather(img, dim=1) img = img[:, ref_length:] # ---------------------------- Final layer ------------------------------ img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) img = self.unpatchify(img, tt, th, tw) if return_dict: out['x'] = img return out return img def unpatchify(self, x, t, h, w): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.unpatchify_channels pt, ph, pw = self.patch_size assert t * h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw)) x = torch.einsum('nthwcopq->nctohpwq', x) imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) return imgs def params_count(self): counts = { "double": sum([ sum(p.numel() for p in block.img_attn_qkv.parameters()) + sum(p.numel() for p in block.img_attn_proj.parameters()) + sum(p.numel() for p in block.img_mlp.parameters()) + sum(p.numel() for p in block.txt_attn_qkv.parameters()) + sum(p.numel() for p in block.txt_attn_proj.parameters()) + sum(p.numel() for p in block.txt_mlp.parameters()) for block in self.double_blocks ]), "single": sum([ sum(p.numel() for p in block.linear1.parameters()) + sum(p.numel() for p in block.linear2.parameters()) for block in self.single_blocks ]), "total": sum(p.numel() for p in self.parameters()), } counts["attn+mlp"] = counts["double"] + counts["single"] return counts ################################################################################# # HunyuanVideo Configs # ################################################################################# HUNYUAN_VIDEO_CONFIG = { # Attn+MLP / Total 'HYVideo-T/2': { # 9.0B / 12.5B 'depth_double_blocks': 20, 'depth_single_blocks': 40, 'rope_dim_list': [16, 56, 56], 'hidden_size': 3072, 'num_heads': 24, 'mlp_width_ratio': 4, }, }