Hunyuan-Avatar / hymm_sp /modules /attn_layers.py
rahul7star's picture
Upload 99 files
357c94c verified
import importlib.metadata
import math
from typing import Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
from flash_attn import flash_attn_qkvpacked_func, flash_attn_kvpacked_func, flash_attn_varlen_kvpacked_func
from flash_attn.bert_padding import index_first_axis
except ImportError:
flash_attn_qkvpacked_func, flash_attn_kvpacked_func, flash_attn_varlen_kvpacked_func = None, None, None
index_first_axis = None
from packaging import version
from transformers.utils.import_utils import _is_package_available
from .norm_layers import get_norm_layer
def reshape_for_broadcast(freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], x: torch.Tensor, head_first=False):
"""
Reshape frequency tensor for broadcasting it with another tensor.
This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
for the purpose of broadcasting the frequency tensor during element-wise operations.
Notes:
When using FlashMHAModified, head_first should be False.
When using Attention, head_first should be True.
Args:
freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped.
x (torch.Tensor): Target tensor for broadcasting compatibility.
head_first (bool): head dimension first (except batch dim) or not.
Returns:
torch.Tensor: Reshaped frequency tensor.
Raises:
AssertionError: If the frequency tensor doesn't match the expected shape.
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
"""
ndim = x.ndim
assert 0 <= 1 < ndim
if isinstance(freqs_cis, tuple):
# freqs_cis: (cos, sin) in real space
if head_first:
assert freqs_cis[0].shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
else:
assert freqs_cis[0].shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
else:
# freqs_cis: values in complex space
if head_first:
assert freqs_cis.shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
else:
assert freqs_cis.shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def rotate_half(x):
x_real, x_imag = x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
head_first: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor.
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
returned as real tensors.
Args:
xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D]
xk (torch.Tensor): Key tensor to apply rotary embeddings. [B, S, H, D]
freqs_cis (torch.Tensor or tuple): Precomputed frequency tensor for complex exponential.
head_first (bool): head dimension first (except batch dim) or not.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
xk_out = None
if isinstance(freqs_cis, tuple):
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
cos, sin = cos.to(xq.device), sin.to(xq.device)
# real * cos - imag * sin
# imag * cos + real * sin
xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq)
xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk)
else:
# view_as_complex will pack [..., D/2, 2](real) to [..., D/2](complex)
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [B, S, H, D//2]
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device) # [S, D//2] --> [1, S, 1, D//2]
# (real, imag) * (cos, sin) = (real * cos - imag * sin, imag * cos + real * sin)
# view_as_real will expand [..., D/2](complex) to [..., D/2, 2](real)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # [B, S, H, D//2]
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
return xq_out, xk_out
class BasicAttentionLayer(nn.Module):
def __init__(self, attn_mode='flash', deterministic=False):
super().__init__()
self.attn_mode = attn_mode
self.deterministic = deterministic
def set_attn_mode(self, new_mode):
self.attn_mode = new_mode
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
MEMORY_LAYOUT = {
"self_flash": (
lambda x: x,
lambda x: x,
),
"cross_flash": (
lambda x: x,
lambda x: x,
),
"torch": (
lambda x: x.transpose(1, 2),
lambda x: x.transpose(1, 2),
),
"vanilla": (
lambda x: x.transpose(1, 2),
lambda x: x.transpose(1, 2),
),
}
# Copyed from https://github.com/huggingface/transformers/blob/b873234cb649a24865021f0d598627ce2b24d34a/src/transformers/modeling_flash_attention_utils.py#L33C1-L57C6
def _get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, int]:
"""
Retrieves indexing data required to repad unpadded (ragged) tensors.
Arguments:
attention_mask (`torch.Tensor`):
Boolean or int tensor of shape (batch_size, sequence_length), 1 means valid and 0 means not valid.
Return:
indices (`torch.Tensor):
The indices of non-masked tokens from the flattened input sequence.
cu_seqlens (`torch.Tensor`):
The cumulative sequence lengths, used to index into ragged (unpadded) tensors. `cu_seqlens` shape is (batch_size + 1,).
max_seqlen_in_batch (`int`):
Maximum sequence length in batch.
"""
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
# Copyed from https://github.com/huggingface/transformers/blob/b873234cb649a24865021f0d598627ce2b24d34a/src/transformers/utils/import_utils.py#L822
def is_flash_attn_greater_or_equal(library_version: str):
if not _is_package_available("flash_attn"):
return False
return version.parse(importlib.metadata.version("flash_attn")) >= version.parse(library_version)
def get_kv_seqlens_with_mask(attn_mask, k, v):
indices_k, cu_seqlens_k, max_seqlen_k = _get_unpad_data(attn_mask)
b, s1, a, d = k.shape
k = index_first_axis(k.reshape(b * s1, a, d), indices_k)
v = index_first_axis(v.reshape(b * s1, a, d), indices_k)
kv = torch.stack([k, v], dim=1)
return cu_seqlens_k, max_seqlen_k, kv
def get_q_seqlens(q):
bs, s, a, d = q.shape
cu_seqlens_q = torch.arange(0, (bs + 1) * s, step=s, dtype=torch.int32, device=q.device)
q = q.reshape(bs * s, a, d)
return cu_seqlens_q, s, q
def attention(q, k, v, mode, drop_rate=0, attn_mask=None, causal=False, deterministic=False,
cu_seqlens=None, max_seqlen=None, cu_seqlens_k=None, max_seqlen_k=None):
"""
Perform QKV self attention.
Args:
q (torch.Tensor): Query tensor with shape [b, s, a, d], where a is the number of heads.
k (torch.Tensor): Key tensor with shape [b, s1, a, d]
v (torch.Tensor): Value tensor with shape [b, s1, a, d]
mode (str): Attention mode. Choose from 'self_flash', 'cross_flash', 'torch', and 'vanilla'.
drop_rate (float): Dropout rate in attention map. (default: 0)
attn_mask (torch.Tensor): Attention mask with shape [b, s1] (cross_attn), or [b, a, s, s1] (torch or vanilla).
(default: None)
causal (bool): Whether to use causal attention. (default: False)
deterministic (bool): Whether to use deterministic attention. (default: False)
cu_seqlens (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
used to index into q.
max_seqlen (int): The maximum sequence length in the batch of q.
cu_seqlens_k (torch.Tensor): dtype torch.int32. The cumulative sequence lengths of the sequences in the batch,
used to index into kv.
max_seqlen_k (int): The maximum sequence length in the batch of k and v.
Returns:
torch.Tensor: Output tensor after self attention with shape [b, s, ad]
"""
pre_attn_layout, post_attn_layout = MEMORY_LAYOUT[mode]
q = pre_attn_layout(q)
k = pre_attn_layout(k)
v = pre_attn_layout(v)
if mode == 'torch':
if attn_mask is not None and attn_mask.dtype != torch.bool:
attn_mask = attn_mask.to(q.dtype)
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal)
elif mode == 'vanilla':
scale_factor = 1 / math.sqrt(q.size(-1))
b, a, s, _ = q.shape
s1 = k.size(2)
attn_bias = torch.zeros(b, a, s, s1, dtype=q.dtype, device=q.device)
if causal:
# Only applied to self attention
assert attn_mask is None, "Causal mask and attn_mask cannot be used together"
temp_mask = torch.ones(b, a, s, s, dtype=torch.bool, device=q.device).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(q.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn = (q @ k.transpose(-2, -1)) * scale_factor
attn += attn_bias
attn = attn.softmax(dim=-1)
attn = torch.dropout(attn, p=drop_rate, train=True)
x = attn @ v
else:
raise NotImplementedError(f'Unsupported attention mode: {mode}')
x = post_attn_layout(x)
b, s, a, d = x.shape
out = x.reshape(b, s, -1)
return out
class SelfAttentionLayer(BasicAttentionLayer):
def __init__(self,
dim,
num_heads,
qkv_bias=True,
qk_norm=True,
attn_drop=0,
proj_drop=0,
dtype=None,
device=None,
norm_type='layer',
attn_mode='self_flash',
deterministic=False,
) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__(attn_mode, deterministic)
self.dim = dim
self.num_heads = num_heads
assert self.dim % num_heads == 0, "dim must be divisible by num_heads"
self.head_dim = self.dim // num_heads
self.attn_drop = attn_drop
# This assertion is aligned with flash attention
assert (
self.head_dim % 8 == 0 and self.head_dim <= 128
), "Only support head_dim <= 128 and divisible by 8"
self.Wqkv = nn.Linear(dim, dim * 3, bias=qkv_bias, **factory_kwargs)
norm_layer = get_norm_layer(norm_type)
self.q_norm = (
norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.k_norm = (
norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.out_proj = nn.Linear(dim, dim, bias=qkv_bias, **factory_kwargs)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, freqs_cis=None, attn_mask=None):
"""
Args:
x (torch.Tensor): (batch, seq_len, hidden_dim) (where hidden_dim = num heads * head dim)
freqs_cis (torch.Tensor, optional): (batch, hidden_dim // 2), RoPE for image
attn_mask (torch.Tensor, optional): (batch, seq_len, seq_len), mask for attention
"""
b, s, d = x.shape
# Apply QKV projection
qkv = self.Wqkv(x)
qkv = qkv.view(b, s, 3, self.num_heads, self.head_dim) # [b, s, 3, a, d]
q, k, v = qkv.unbind(dim=2) # [b, s, a, d]
# Apply QK-Norm if needed
q = self.q_norm(q)
k = self.k_norm(k)
# Apply RoPE if needed
if freqs_cis is not None:
qq, kk = apply_rotary_emb(q, k, freqs_cis)
assert qq.shape == q.shape and kk.shape == k.shape, \
f'qq: {qq.shape}, q: {q.shape}, kk: {kk.shape}, k: {k.shape}'
q, k = qq, kk
# Apply self attention
context = attention(q, k, v,
drop_rate=self.attn_drop if self.training else 0,
attn_mask=attn_mask,
mode=self.attn_mode,
deterministic=self.deterministic,
)
out = self.out_proj(context)
out = self.proj_drop(out)
return out
class CrossAttentionLayer(BasicAttentionLayer):
def __init__(self,
qdim,
kdim,
num_heads,
qkv_bias=True,
qk_norm=True,
attn_drop=0,
proj_drop=0,
dtype=None,
device=None,
norm_type='layer',
attn_mode='cross_flash',
deterministic=False,
):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__(attn_mode, deterministic)
self.qdim = qdim
self.kdim = kdim
self.num_heads = num_heads
assert self.qdim % num_heads == 0, "qdim must be divisible by num_heads"
self.head_dim = self.qdim // num_heads
self.attn_drop = attn_drop
# This assertion is aligned with flash attention
assert (
self.head_dim % 8 == 0 and self.head_dim <= 128
), "Only support head_dim <= 128 and divisible by 8"
self.q_proj = nn.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
self.kv_proj = nn.Linear(kdim, 2 * qdim, bias=qkv_bias, **factory_kwargs)
norm_layer = get_norm_layer(norm_type)
self.q_norm = (
norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.k_norm = (
norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.out_proj = nn.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, y, attn_mask=None):
"""
Args:
x (torch.Tensor): (batch, seq_len, hidden_dim) (where hidden_dim = num heads * head dim)
y (torch.Tensor): (batch, seq_len1, hidden_dim1)
attn_mask (torch.Tensor): (batch, seq_len1), mask for attention
"""
b, s, d = x.shape
_, s1, d1 = y.shape
q = self.q_proj(x).view(b, s, self.num_heads, self.head_dim)
kv = self.kv_proj(y).view(b, s1, 2, self.num_heads, self.head_dim)
k, v = kv.unbind(dim=2)
# Apply QK-Norm if needed
q = self.q_norm(q)
k = self.k_norm(k)
# Apply cross attention
context = attention(q, k, v,
attn_mask=attn_mask,
drop_rate=self.attn_drop if self.training else 0,
mode=self.attn_mode,
deterministic=self.deterministic,
)
out = self.out_proj(context)
out = self.proj_drop(out)
return out