Spaces:
Build error
Build error
File size: 38,820 Bytes
357c94c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
import os
import math
from typing import Dict, Optional, Tuple, Union
from dataclasses import dataclass
from torch import distributed as dist
import loguru
import torch
import torch.nn as nn
import torch.distributed
RECOMMENDED_DTYPE = torch.float16
def mpi_comm():
from mpi4py import MPI
return MPI.COMM_WORLD
from torch import distributed as dist
def mpi_rank():
return dist.get_rank()
def mpi_world_size():
return dist.get_world_size()
class TorchIGather:
def __init__(self):
if not torch.distributed.is_initialized():
rank = mpi_rank()
world_size = mpi_world_size()
os.environ['RANK'] = str(rank)
os.environ['WORLD_SIZE'] = str(world_size)
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = str(29500)
torch.cuda.set_device(rank)
torch.distributed.init_process_group('nccl')
self.handles = []
self.buffers = []
self.world_size = dist.get_world_size()
self.rank = dist.get_rank()
self.groups_ids = []
self.group = {}
for i in range(self.world_size):
self.groups_ids.append(tuple(range(i + 1)))
for group in self.groups_ids:
new_group = dist.new_group(group)
self.group[group[-1]] = new_group
def gather(self, tensor, n_rank=None):
if n_rank is not None:
group = self.group[n_rank - 1]
else:
group = None
rank = self.rank
tensor = tensor.to(RECOMMENDED_DTYPE)
if rank == 0:
buffer = [torch.empty_like(tensor) for i in range(n_rank)]
else:
buffer = None
self.buffers.append(buffer)
handle = torch.distributed.gather(tensor, buffer, async_op=True, group=group)
self.handles.append(handle)
def wait(self):
for handle in self.handles:
handle.wait()
def clear(self):
self.buffers = []
self.handles = []
from diffusers.configuration_utils import ConfigMixin, register_to_config
try:
# This diffusers is modified and packed in the mirror.
from diffusers.loaders import FromOriginalVAEMixin
except ImportError:
# Use this to be compatible with the original diffusers.
from diffusers.loaders.single_file_model import FromOriginalModelMixin as FromOriginalVAEMixin
from diffusers.utils.accelerate_utils import apply_forward_hook
from diffusers.models.attention_processor import (
ADDED_KV_ATTENTION_PROCESSORS,
CROSS_ATTENTION_PROCESSORS,
Attention,
AttentionProcessor,
AttnAddedKVProcessor,
AttnProcessor,
)
from diffusers.models.modeling_outputs import AutoencoderKLOutput
from diffusers.models.modeling_utils import ModelMixin
from .vae import DecoderCausal3D, BaseOutput, DecoderOutput, DiagonalGaussianDistribution, EncoderCausal3D
"""
use trt need install polygraphy and onnx-graphsurgeon
python3 -m pip install --upgrade polygraphy>=0.47.0 onnx-graphsurgeon --extra-index-url https://pypi.ngc.nvidia.com
"""
try:
from polygraphy.backend.trt import ( TrtRunner, EngineFromBytes)
from polygraphy.backend.common import BytesFromPath
except:
print("TrtRunner or EngineFromBytes is not available, you can not use trt engine")
@dataclass
class DecoderOutput2(BaseOutput):
sample: torch.FloatTensor
posterior: Optional[DiagonalGaussianDistribution] = None
MODEL_OUTPUT_PATH = os.environ.get('MODEL_OUTPUT_PATH')
MODEL_BASE = os.environ.get('MODEL_BASE')
CPU_OFFLOAD = int(os.environ.get("CPU_OFFLOAD", 0))
DISABLE_SP = int(os.environ.get("DISABLE_SP", 0))
print(f'vae: cpu_offload={CPU_OFFLOAD}, DISABLE_SP={DISABLE_SP}')
class AutoencoderKLCausal3D(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, *optional*, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str] = ("DownEncoderBlockCausal3D",),
up_block_types: Tuple[str] = ("UpDecoderBlockCausal3D",),
block_out_channels: Tuple[int] = (64,),
layers_per_block: int = 1,
act_fn: str = "silu",
latent_channels: int = 4,
norm_num_groups: int = 32,
sample_size: int = 32,
sample_tsize: int = 64,
scaling_factor: float = 0.18215,
force_upcast: float = True,
spatial_compression_ratio: int = 8,
time_compression_ratio: int = 4,
disable_causal_conv: bool = False,
mid_block_add_attention: bool = True,
mid_block_causal_attn: bool = False,
use_trt_engine: bool = False,
nccl_gather: bool = True,
engine_path: str = f"{MODEL_BASE}/HYVAE_decoder+conv_256x256xT_fp16_H20.engine",
):
super().__init__()
self.disable_causal_conv = disable_causal_conv
self.time_compression_ratio = time_compression_ratio
self.encoder = EncoderCausal3D(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=True,
time_compression_ratio=time_compression_ratio,
spatial_compression_ratio=spatial_compression_ratio,
disable_causal=disable_causal_conv,
mid_block_add_attention=mid_block_add_attention,
mid_block_causal_attn=mid_block_causal_attn,
)
self.decoder = DecoderCausal3D(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
time_compression_ratio=time_compression_ratio,
spatial_compression_ratio=spatial_compression_ratio,
disable_causal=disable_causal_conv,
mid_block_add_attention=mid_block_add_attention,
mid_block_causal_attn=mid_block_causal_attn,
)
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
self.use_slicing = False
self.use_spatial_tiling = False
self.use_temporal_tiling = False
# only relevant if vae tiling is enabled
self.tile_sample_min_tsize = sample_tsize
self.tile_latent_min_tsize = sample_tsize // time_compression_ratio
self.tile_sample_min_size = self.config.sample_size
sample_size = (
self.config.sample_size[0]
if isinstance(self.config.sample_size, (list, tuple))
else self.config.sample_size
)
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
self.tile_overlap_factor = 0.25
use_trt_engine = False #if CPU_OFFLOAD else True
# ============= parallism related code ===================
self.parallel_decode = use_trt_engine
self.nccl_gather = nccl_gather
# only relevant if parallel_decode is enabled
self.gather_to_rank0 = self.parallel_decode
self.engine_path = engine_path
self.use_trt_decoder = use_trt_engine
@property
def igather(self):
assert self.nccl_gather and self.gather_to_rank0
if hasattr(self, '_igather'):
return self._igather
else:
self._igather = TorchIGather()
return self._igather
@property
def use_padding(self):
return (
self.use_trt_decoder
# dist.gather demands all processes possess to have the same tile shape.
or (self.nccl_gather and self.gather_to_rank0)
)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (EncoderCausal3D, DecoderCausal3D)):
module.gradient_checkpointing = value
def enable_temporal_tiling(self, use_tiling: bool = True):
self.use_temporal_tiling = use_tiling
def disable_temporal_tiling(self):
self.enable_temporal_tiling(False)
def enable_spatial_tiling(self, use_tiling: bool = True):
self.use_spatial_tiling = use_tiling
def disable_spatial_tiling(self):
self.enable_spatial_tiling(False)
def enable_tiling(self, use_tiling: bool = True):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.enable_spatial_tiling(use_tiling)
self.enable_temporal_tiling(use_tiling)
def disable_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.disable_spatial_tiling()
self.disable_temporal_tiling()
def enable_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def load_trt_decoder(self):
self.use_trt_decoder = True
self.engine = EngineFromBytes(BytesFromPath(self.engine_path))
self.trt_decoder_runner = TrtRunner(self.engine)
self.activate_trt_decoder()
def disable_trt_decoder(self):
self.use_trt_decoder = False
del self.engine
def activate_trt_decoder(self):
self.trt_decoder_runner.activate()
def deactivate_trt_decoder(self):
self.trt_decoder_runner.deactivate()
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
if hasattr(module, "get_processor"):
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
fn_recursive_add_processors(name, module, processors)
return processors
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor, _remove_lora=_remove_lora)
else:
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
fn_recursive_attn_processor(name, module, processor)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
def set_default_attn_processor(self):
"""
Disables custom attention processors and sets the default attention implementation.
"""
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnAddedKVProcessor()
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
processor = AttnProcessor()
else:
raise ValueError(
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
)
self.set_attn_processor(processor, _remove_lora=True)
@apply_forward_hook
def encode(
self, x: torch.FloatTensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.FloatTensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded images. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
assert len(x.shape) == 5, "The input tensor should have 5 dimensions"
if self.use_temporal_tiling and x.shape[2] > self.tile_sample_min_tsize:
return self.temporal_tiled_encode(x, return_dict=return_dict)
if self.use_spatial_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.spatial_tiled_encode(x, return_dict=return_dict)
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
assert len(z.shape) == 5, "The input tensor should have 5 dimensions"
if self.use_temporal_tiling and z.shape[2] > self.tile_latent_min_tsize:
return self.temporal_tiled_decode(z, return_dict=return_dict)
if self.use_spatial_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.spatial_tiled_decode(z, return_dict=return_dict)
if self.use_trt_decoder:
# For unknown reason, `copy_outputs_to_host` must be set to True
dec = self.trt_decoder_runner.infer({"input": z.to(RECOMMENDED_DTYPE).contiguous()}, copy_outputs_to_host=True)["output"].to(device=z.device, dtype=z.dtype)
else:
z = self.post_quant_conv(z)
dec = self.decoder(z)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
@apply_forward_hook
def decode(
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
) -> Union[DecoderOutput, torch.FloatTensor]:
"""
Decode a batch of images.
Args:
z (`torch.FloatTensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.parallel_decode:
if z.dtype != RECOMMENDED_DTYPE:
loguru.logger.warning(
f'For better performance, using {RECOMMENDED_DTYPE} for both latent features and model parameters is recommended.'
f'Current latent dtype {z.dtype}. '
f'Please note that the input latent will be cast to {RECOMMENDED_DTYPE} internally when decoding.'
)
z = z.to(RECOMMENDED_DTYPE)
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
if blend_extent == 0:
return b
a_region = a[..., -blend_extent:, :]
b_region = b[..., :blend_extent, :]
weights = torch.arange(blend_extent, device=a.device, dtype=a.dtype) / blend_extent
weights = weights.view(1, 1, 1, blend_extent, 1)
blended = a_region * (1 - weights) + b_region * weights
b[..., :blend_extent, :] = blended
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
if blend_extent == 0:
return b
a_region = a[..., -blend_extent:]
b_region = b[..., :blend_extent]
weights = torch.arange(blend_extent, device=a.device, dtype=a.dtype) / blend_extent
weights = weights.view(1, 1, 1, 1, blend_extent)
blended = a_region * (1 - weights) + b_region * weights
b[..., :blend_extent] = blended
return b
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
if blend_extent == 0:
return b
a_region = a[..., -blend_extent:, :, :]
b_region = b[..., :blend_extent, :, :]
weights = torch.arange(blend_extent, device=a.device, dtype=a.dtype) / blend_extent
weights = weights.view(1, 1, blend_extent, 1, 1)
blended = a_region * (1 - weights) + b_region * weights
b[..., :blend_extent, :, :] = blended
return b
def spatial_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True, return_moments: bool = False) -> AutoencoderKLOutput:
r"""Encode a batch of images using a tiled encoder.
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
output, but they should be much less noticeable.
Args:
x (`torch.FloatTensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
`tuple` is returned.
"""
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
row_limit = self.tile_latent_min_size - blend_extent
# Split video into tiles and encode them separately.
rows = []
for i in range(0, x.shape[-2], overlap_size):
row = []
for j in range(0, x.shape[-1], overlap_size):
tile = x[:, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
tile = self.encoder(tile)
tile = self.quant_conv(tile)
row.append(tile)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=-1))
moments = torch.cat(result_rows, dim=-2)
if return_moments:
return moments
posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def spatial_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
r"""
Decode a batch of images using a tiled decoder.
Args:
z (`torch.FloatTensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
row_limit = self.tile_sample_min_size - blend_extent
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
if self.parallel_decode:
rank = mpi_rank()
torch.cuda.set_device(rank) # set device for trt_runner
world_size = mpi_world_size()
tiles = []
afters_if_padding = []
for i in range(0, z.shape[-2], overlap_size):
for j in range(0, z.shape[-1], overlap_size):
tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
if self.use_padding and (tile.shape[-2] < self.tile_latent_min_size or tile.shape[-1] < self.tile_latent_min_size):
from torch.nn import functional as F
after_h = tile.shape[-2] * 8
after_w = tile.shape[-1] * 8
padding = (0, self.tile_latent_min_size - tile.shape[-1], 0, self.tile_latent_min_size - tile.shape[-2], 0, 0)
tile = F.pad(tile, padding, "replicate").to(device=tile.device, dtype=tile.dtype)
afters_if_padding.append((after_h, after_w))
else:
afters_if_padding.append(None)
tiles.append(tile)
# balance tasks
ratio = math.ceil(len(tiles) / world_size)
tiles_curr_rank = tiles[rank * ratio: None if rank == world_size - 1 else (rank + 1) * ratio]
decoded_results = []
total = len(tiles)
n_task = ([ratio] * (total // ratio) + ([total % ratio] if total % ratio else []))
n_task = n_task + [0] * (8 - len(n_task))
for i, tile in enumerate(tiles_curr_rank):
if self.use_trt_decoder:
# For unknown reason, `copy_outputs_to_host` must be set to True
decoded = self.trt_decoder_runner.infer(
{"input": tile.to(RECOMMENDED_DTYPE).contiguous()},
copy_outputs_to_host=True
)["output"].to(device=z.device, dtype=z.dtype)
decoded_results.append(decoded)
else:
decoded_results.append(self.decoder(self.post_quant_conv(tile)))
def find(n):
return next((i for i, task_n in enumerate(n_task) if task_n < n), len(n_task))
if self.nccl_gather and self.gather_to_rank0:
self.igather.gather(decoded, n_rank=find(i + 1))
if not self.nccl_gather:
if self.gather_to_rank0:
decoded_results = mpi_comm().gather(decoded_results, root=0)
if rank != 0:
return DecoderOutput(sample=None)
else:
decoded_results = mpi_comm().allgather(decoded_results)
decoded_results = sum(decoded_results, [])
else:
# [Kevin]:
# We expect all tiles obtained from the same rank have the same shape.
# Shapes among ranks can differ due to the imbalance of task assignment.
if self.gather_to_rank0:
if rank == 0:
self.igather.wait()
gather_results = self.igather.buffers
self.igather.clear()
else:
raise NotImplementedError('The old `allgather` implementation is deprecated for nccl plan.')
if rank != 0 and self.gather_to_rank0:
return DecoderOutput(sample=None)
decoded_results = [col[i] for i in range(max([len(k) for k in gather_results])) for col in gather_results if i < len(col)]
# Crop the padding region in pixel level
if self.use_padding:
new_decoded_results = []
for after, dec in zip(afters_if_padding, decoded_results):
if after is not None:
after_h, after_w = after
new_decoded_results.append(dec[:, :, :, :after_h, :after_w])
else:
new_decoded_results.append(dec)
decoded_results = new_decoded_results
rows = []
decoded_results_iter = iter(decoded_results)
for i in range(0, z.shape[-2], overlap_size):
row = []
for j in range(0, z.shape[-1], overlap_size):
row.append(next(decoded_results_iter).to(rank))
rows.append(row)
else:
rows = []
for i in range(0, z.shape[-2], overlap_size):
row = []
for j in range(0, z.shape[-1], overlap_size):
tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
tile = self.post_quant_conv(tile)
decoded = self.decoder(tile)
row.append(decoded)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_extent)
result_row.append(tile[:, :, :, :row_limit, :row_limit])
result_rows.append(torch.cat(result_row, dim=-1))
dec = torch.cat(result_rows, dim=-2)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def temporal_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
assert not self.disable_causal_conv, "Temporal tiling is only compatible with causal convolutions."
B, C, T, H, W = x.shape
overlap_size = int(self.tile_sample_min_tsize * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_latent_min_tsize * self.tile_overlap_factor)
t_limit = self.tile_latent_min_tsize - blend_extent
# Split the video into tiles and encode them separately.
row = []
for i in range(0, T, overlap_size):
tile = x[:, :, i : i + self.tile_sample_min_tsize + 1, :, :]
if self.use_spatial_tiling and (tile.shape[-1] > self.tile_sample_min_size or tile.shape[-2] > self.tile_sample_min_size):
tile = self.spatial_tiled_encode(tile, return_moments=True)
else:
tile = self.encoder(tile)
tile = self.quant_conv(tile)
if i > 0:
tile = tile[:, :, 1:, :, :]
row.append(tile)
result_row = []
for i, tile in enumerate(row):
if i > 0:
tile = self.blend_t(row[i - 1], tile, blend_extent)
result_row.append(tile[:, :, :t_limit, :, :])
else:
result_row.append(tile[:, :, :t_limit+1, :, :])
moments = torch.cat(result_row, dim=2)
posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def temporal_tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
# Split z into overlapping tiles and decode them separately.
assert not self.disable_causal_conv, "Temporal tiling is only supported with causal convolutions."
B, C, T, H, W = z.shape
overlap_size = int(self.tile_latent_min_tsize * (1 - self.tile_overlap_factor))
blend_extent = int(self.tile_sample_min_tsize * self.tile_overlap_factor)
t_limit = self.tile_sample_min_tsize - blend_extent
rank = 0 if CPU_OFFLOAD or DISABLE_SP else mpi_rank()
row = []
for i in range(0, T, overlap_size):
tile = z[:, :, i : i + self.tile_latent_min_tsize + 1, :, :]
if self.use_spatial_tiling and (tile.shape[-1] > self.tile_latent_min_size or tile.shape[-2] > self.tile_latent_min_size):
decoded = self.spatial_tiled_decode(tile, return_dict=True).sample
else:
tile = self.post_quant_conv(tile)
decoded = self.decoder(tile)
if i > 0 and (not (self.parallel_decode and self.gather_to_rank0) or rank == 0):
decoded = decoded[:, :, 1:, :, :]
row.append(decoded)
if not CPU_OFFLOAD and not DISABLE_SP and self.parallel_decode and self.gather_to_rank0 and rank != 0:
return DecoderOutput(sample=None)
result_row = []
for i, tile in enumerate(row):
if i > 0:
tile = self.blend_t(row[i - 1], tile, blend_extent)
result_row.append(tile[:, :, :t_limit, :, :])
else:
result_row.append(tile[:, :, :t_limit+1, :, :])
dec = torch.cat(result_row, dim=2)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.FloatTensor,
sample_posterior: bool = False,
return_dict: bool = True,
return_posterior: bool = False,
generator: Optional[torch.Generator] = None,
) -> Union[DecoderOutput2, torch.FloatTensor]:
r"""
Args:
sample (`torch.FloatTensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z).sample
if not return_dict:
if return_posterior:
return (dec, posterior)
else:
return (dec,)
if return_posterior:
return DecoderOutput2(sample=dec, posterior=posterior)
else:
return DecoderOutput2(sample=dec)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
def fuse_qkv_projections(self):
"""
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
self.original_attn_processors = None
for _, attn_processor in self.attn_processors.items():
if "Added" in str(attn_processor.__class__.__name__):
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
self.original_attn_processors = self.attn_processors
for module in self.modules():
if isinstance(module, Attention):
module.fuse_projections(fuse=True)
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
def unfuse_qkv_projections(self):
"""Disables the fused QKV projection if enabled.
<Tip warning={true}>
This API is 🧪 experimental.
</Tip>
"""
if self.original_attn_processors is not None:
self.set_attn_processor(self.original_attn_processors)
|