Spaces:
Build error
Build error
File size: 13,290 Bytes
357c94c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
import os
import torch
import datetime
import torch.distributed as dist
from typing import Any, Tuple
from torch import Tensor
from flash_attn.flash_attn_interface import flash_attn_varlen_func
class COMM_INFO:
def __init__(self):
self.group = None
self.sp_size = 1
self.global_rank = 0
self.rank_within_group = 0
self.group_id = 0
nccl_info = COMM_INFO()
_SEQUENCE_PARALLEL_STATE = False
def get_cu_seqlens(text_mask, img_len):
"""Calculate cu_seqlens_q, cu_seqlens_kv using text_mask and img_len
Args:
text_mask (torch.Tensor): the mask of text
img_len (int): the length of image
Returns:
torch.Tensor: the calculated cu_seqlens for flash attention
"""
batch_size = text_mask.shape[0]
text_len = text_mask.sum(dim=1)
max_len = text_mask.shape[1] + img_len
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
for i in range(batch_size):
s = text_len[i] + img_len
s1 = i * max_len + s
s2 = (i + 1) * max_len
cu_seqlens[2 * i + 1] = s1
cu_seqlens[2 * i + 2] = s2
return cu_seqlens
def initialize_sequence_parallel_state(sequence_parallel_size):
global _SEQUENCE_PARALLEL_STATE
if sequence_parallel_size > 1:
_SEQUENCE_PARALLEL_STATE = True
initialize_sequence_parallel_group(sequence_parallel_size)
else:
nccl_info.sp_size = 1
nccl_info.global_rank = int(os.getenv("RANK", "0"))
nccl_info.rank_within_group = 0
nccl_info.group_id = int(os.getenv("RANK", "0"))
def get_sequence_parallel_state():
return _SEQUENCE_PARALLEL_STATE
def initialize_sequence_parallel_group(sequence_parallel_size):
"""Initialize the sequence parallel group."""
rank = int(os.getenv("RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
assert (
world_size % sequence_parallel_size == 0
), "world_size must be divisible by sequence_parallel_size, but got world_size: {}, sequence_parallel_size: {}".format(
world_size, sequence_parallel_size)
nccl_info.sp_size = sequence_parallel_size
nccl_info.global_rank = rank
num_sequence_parallel_groups: int = world_size // sequence_parallel_size
for i in range(num_sequence_parallel_groups):
ranks = range(i * sequence_parallel_size, (i + 1) * sequence_parallel_size)
group = dist.new_group(ranks)
if rank in ranks:
nccl_info.group = group
nccl_info.rank_within_group = rank - i * sequence_parallel_size
nccl_info.group_id = i
def initialize_distributed(seed):
local_rank = int(os.getenv("RANK", 0))
world_size = int(os.getenv("WORLD_SIZE", 1))
torch.cuda.set_device(local_rank)
dist.init_process_group(backend="nccl", init_method="env://", timeout=datetime.timedelta(seconds=2**31-1), world_size=world_size, rank=local_rank)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
initialize_sequence_parallel_state(world_size)
def _all_to_all_4D(input: torch.tensor, scatter_idx: int = 2, gather_idx: int = 1, group=None) -> torch.tensor:
"""
all-to-all for QKV
Args:
input (torch.tensor): a tensor sharded along dim scatter dim
scatter_idx (int): default 1
gather_idx (int): default 2
group : torch process group
Returns:
torch.tensor: resharded tensor (bs, seqlen/P, hc, hs)
"""
assert (input.dim() == 4), f"input must be 4D tensor, got {input.dim()} and shape {input.shape}"
seq_world_size = dist.get_world_size(group)
if scatter_idx == 2 and gather_idx == 1:
# input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, hc, hs) output: (bs, seqlen, hc/P, hs)
bs, shard_seqlen, hc, hs = input.shape
seqlen = shard_seqlen * seq_world_size
shard_hc = hc // seq_world_size
# transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
# (bs, seqlen/P, hc, hs) -reshape-> (bs, seq_len/P, P, hc/P, hs) -transpose(0,2)-> (P, seq_len/P, bs, hc/P, hs)
input_t = (input.reshape(bs, shard_seqlen, seq_world_size, shard_hc, hs).transpose(0, 2).contiguous())
output = torch.empty_like(input_t)
# https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
# (P, seq_len/P, bs, hc/P, hs) scatter seqlen -all2all-> (P, seq_len/P, bs, hc/P, hs) scatter head
if seq_world_size > 1:
dist.all_to_all_single(output, input_t, group=group)
torch.cuda.synchronize()
else:
output = input_t
# if scattering the seq-dim, transpose the heads back to the original dimension
output = output.reshape(seqlen, bs, shard_hc, hs)
# (seq_len, bs, hc/P, hs) -reshape-> (bs, seq_len, hc/P, hs)
output = output.transpose(0, 1).contiguous().reshape(bs, seqlen, shard_hc, hs)
return output
elif scatter_idx == 1 and gather_idx == 2:
# input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs)
bs, seqlen, shard_hc, hs = input.shape
hc = shard_hc * seq_world_size
shard_seqlen = seqlen // seq_world_size
seq_world_size = dist.get_world_size(group)
# transpose groups of heads with the seq-len parallel dimension, so that we can scatter them!
# (bs, seqlen, hc/P, hs) -reshape-> (bs, P, seq_len/P, hc/P, hs) -transpose(0, 3)-> (hc/P, P, seqlen/P, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, bs, hs)
input_t = (input.reshape(bs, seq_world_size, shard_seqlen, shard_hc,
hs).transpose(0,
3).transpose(0,
1).contiguous().reshape(seq_world_size, shard_hc,
shard_seqlen, bs, hs))
output = torch.empty_like(input_t)
# https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single
# (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head
if seq_world_size > 1:
dist.all_to_all_single(output, input_t, group=group)
torch.cuda.synchronize()
else:
output = input_t
# if scattering the seq-dim, transpose the heads back to the original dimension
output = output.reshape(hc, shard_seqlen, bs, hs)
# (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs)
output = output.transpose(0, 2).contiguous().reshape(bs, shard_seqlen, hc, hs)
return output
else:
raise RuntimeError("scatter_idx must be 1 or 2 and gather_idx must be 1 or 2")
class SeqAllToAll4D(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
group: dist.ProcessGroup,
input: Tensor,
scatter_idx: int,
gather_idx: int,
) -> Tensor:
ctx.group = group
ctx.scatter_idx = scatter_idx
ctx.gather_idx = gather_idx
return _all_to_all_4D(input, scatter_idx, gather_idx, group=group)
@staticmethod
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
return (
None,
SeqAllToAll4D.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx),
None,
None,
)
def all_to_all_4D(
input_: torch.Tensor,
scatter_dim: int = 2,
gather_dim: int = 1,
):
return SeqAllToAll4D.apply(nccl_info.group, input_, scatter_dim, gather_dim)
def _all_to_all(
input_: torch.Tensor,
world_size: int,
group: dist.ProcessGroup,
scatter_dim: int,
gather_dim: int,
):
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
dist.all_to_all(output_list, input_list, group=group)
return torch.cat(output_list, dim=gather_dim).contiguous()
class _AllToAll(torch.autograd.Function):
"""All-to-all communication.
Args:
input_: input matrix
process_group: communication group
scatter_dim: scatter dimension
gather_dim: gather dimension
"""
@staticmethod
def forward(ctx, input_, process_group, scatter_dim, gather_dim):
ctx.process_group = process_group
ctx.scatter_dim = scatter_dim
ctx.gather_dim = gather_dim
ctx.world_size = dist.get_world_size(process_group)
output = _all_to_all(input_, ctx.world_size, process_group, scatter_dim, gather_dim)
return output
@staticmethod
def backward(ctx, grad_output):
grad_output = _all_to_all(
grad_output,
ctx.world_size,
ctx.process_group,
ctx.gather_dim,
ctx.scatter_dim,
)
return (
grad_output,
None,
None,
None,
)
def all_to_all(
input_: torch.Tensor,
scatter_dim: int = 2,
gather_dim: int = 1,
):
return _AllToAll.apply(input_, nccl_info.group, scatter_dim, gather_dim)
class _AllGather(torch.autograd.Function):
"""All-gather communication with autograd support.
Args:
input_: input tensor
dim: dimension along which to concatenate
"""
@staticmethod
def forward(ctx, input_, dim):
ctx.dim = dim
world_size = nccl_info.sp_size
group = nccl_info.group
input_size = list(input_.size())
ctx.input_size = input_size[dim]
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
input_ = input_.contiguous()
dist.all_gather(tensor_list, input_, group=group)
output = torch.cat(tensor_list, dim=dim)
return output
@staticmethod
def backward(ctx, grad_output):
world_size = nccl_info.sp_size
rank = nccl_info.rank_within_group
dim = ctx.dim
input_size = ctx.input_size
sizes = [input_size] * world_size
grad_input_list = torch.split(grad_output, sizes, dim=dim)
grad_input = grad_input_list[rank]
return grad_input, None
def all_gather(input_: torch.Tensor, dim: int = 1):
"""Performs an all-gather operation on the input tensor along the specified dimension.
Args:
input_ (torch.Tensor): Input tensor of shape [B, H, S, D].
dim (int, optional): Dimension along which to concatenate. Defaults to 1.
Returns:
torch.Tensor: Output tensor after all-gather operation, concatenated along 'dim'.
"""
return _AllGather.apply(input_, dim)
def parallel_attention(q, k, v, img_q_len, img_kv_len, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv,):
"""
img_q_len,img_kv_len: 32256
text_mask: 2x256
query: [2, 32256, 24, 128])
encoder_query: [2, 256, 24, 128]
"""
query, encoder_query = q
key, encoder_key = k
value, encoder_value = v
rank = torch.distributed.get_rank()
if get_sequence_parallel_state():
query = all_to_all_4D(query, scatter_dim=2, gather_dim=1) # [2, 32256, 24, 128]
key = all_to_all_4D(key, scatter_dim=2, gather_dim=1)
value = all_to_all_4D(value, scatter_dim=2, gather_dim=1)
def shrink_head(encoder_state, dim):
local_heads = encoder_state.shape[dim] // nccl_info.sp_size
return encoder_state.narrow(dim, nccl_info.rank_within_group * local_heads, local_heads)
encoder_query = shrink_head(encoder_query, dim=2)
encoder_key = shrink_head(encoder_key, dim=2)
encoder_value = shrink_head(encoder_value, dim=2)
sequence_length = query.size(1) # 32256
encoder_sequence_length = encoder_query.size(1) # 256
query = torch.cat([query, encoder_query], dim=1)
key = torch.cat([key, encoder_key], dim=1)
value = torch.cat([value, encoder_value], dim=1)
bsz = query.shape[0]
head = query.shape[-2]
head_dim = query.shape[-1]
query, key, value = [
x.view(x.shape[0] * x.shape[1], *x.shape[2:])
for x in [query, key, value]
]
hidden_states = flash_attn_varlen_func(
query,
key,
value,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
)
# B, S, 3, H, D
hidden_states = hidden_states.view(bsz, max_seqlen_q, head, head_dim).contiguous()
hidden_states, encoder_hidden_states = hidden_states.split_with_sizes((sequence_length, encoder_sequence_length),
dim=1)
if get_sequence_parallel_state():
hidden_states = all_to_all_4D(hidden_states, scatter_dim=1, gather_dim=2)
encoder_hidden_states = all_gather(encoder_hidden_states, dim=2).contiguous()
hidden_states = hidden_states.to(query.dtype)
encoder_hidden_states = encoder_hidden_states.to(query.dtype)
attn = torch.cat([hidden_states, encoder_hidden_states], dim=1)
b, s, _, _= attn.shape
attn = attn.reshape(b, s, -1)
return attn, None |