Spaces:
Build error
Build error
File size: 30,826 Bytes
357c94c 0c66538 f692523 357c94c f692523 357c94c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 |
from typing import List, Tuple, Optional, Union, Dict
from einops import rearrange
import torch, os
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
from flash_attn.flash_attn_interface import flash_attn_varlen_func
from .activation_layers import get_activation_layer
from .norm_layers import get_norm_layer
from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection
from .attn_layers import apply_rotary_emb
from .mlp_layers import MLP, MLPEmbedder, FinalLayer
from .modulate_layers import ModulateDiT, modulate, apply_gate
from .token_refiner import SingleTokenRefiner
from .audio_adapters import AudioProjNet2, PerceiverAttentionCA
from .parallel_states import (
nccl_info,
get_cu_seqlens,
get_sequence_parallel_state,
parallel_attention,
all_gather,
)
CPU_OFFLOAD = int(os.environ.get("CPU_OFFLOAD", 0))
DISABLE_SP = int(os.environ.get("DISABLE_SP", 0))
print(f'models: cpu_offload={CPU_OFFLOAD}, DISABLE_SP={DISABLE_SP}')
class DoubleStreamBlock(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_width_ratio: float,
mlp_act_type: str = 'gelu_tanh',
qk_norm: bool = True,
qk_norm_type: str = 'rms',
qkv_bias: bool = False,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.deterministic = False
self.num_heads = num_heads
head_dim = hidden_size // num_heads
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.img_mod = ModulateDiT(hidden_size, factor=6, act_layer=get_activation_layer("silu"), **factory_kwargs)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.img_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.img_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.img_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.img_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.img_mlp = MLP(
hidden_size,
mlp_hidden_dim,
act_layer=get_activation_layer(mlp_act_type),
bias=True,
**factory_kwargs
)
self.txt_mod = ModulateDiT(hidden_size, factor=6, act_layer=get_activation_layer("silu"), **factory_kwargs)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.txt_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.txt_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.txt_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.txt_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.txt_mlp = MLP(
hidden_size,
mlp_hidden_dim,
act_layer=get_activation_layer(mlp_act_type),
bias=True,
**factory_kwargs
)
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
def forward(
self,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
freqs_cis: tuple = None
) -> Tuple[torch.Tensor, torch.Tensor]:
img_mod1_shift, img_mod1_scale, img_mod1_gate, img_mod2_shift, img_mod2_scale, img_mod2_gate = (
self.img_mod(vec).chunk(6, dim=-1)
)
txt_mod1_shift, txt_mod1_scale, txt_mod1_gate, txt_mod2_shift, txt_mod2_scale, txt_mod2_gate = (
self.txt_mod(vec).chunk(6, dim=-1)
)
if CPU_OFFLOAD: torch.cuda.empty_cache()
# Prepare image for attention.
img_modulated = self.img_norm1(img)
img_modulated = modulate(img_modulated, shift=img_mod1_shift, scale=img_mod1_scale)
img_qkv = self.img_attn_qkv(img_modulated)
if CPU_OFFLOAD: torch.cuda.empty_cache()
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
# Apply QK-Norm if needed
img_q = self.img_attn_q_norm(img_q).to(img_v)
img_k = self.img_attn_k_norm(img_k).to(img_v)
if CPU_OFFLOAD: torch.cuda.empty_cache()
# Apply RoPE if needed.
if freqs_cis is not None:
img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
assert img_qq.shape == img_q.shape and img_kk.shape == img_k.shape, \
f'img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}'
img_q, img_k = img_qq, img_kk
# Prepare txt for attention.
txt_modulated = self.txt_norm1(txt)
txt_modulated = modulate(txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale)
if CPU_OFFLOAD: torch.cuda.empty_cache()
txt_qkv = self.txt_attn_qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
# Apply QK-Norm if needed.
txt_q = self.txt_attn_q_norm(txt_q).to(txt_v)
txt_k = self.txt_attn_k_norm(txt_k).to(txt_v)
if CPU_OFFLOAD: torch.cuda.empty_cache()
# Run actual attention.
q = torch.cat((img_q, txt_q), dim=1)
k = torch.cat((img_k, txt_k), dim=1)
v = torch.cat((img_v, txt_v), dim=1)
# Compute attention.
if CPU_OFFLOAD or DISABLE_SP:
assert cu_seqlens_q.shape[0] == 2 * img.shape[0] + 1
q, k, v = [
x.view(x.shape[0] * x.shape[1], *x.shape[2:])
for x in [q, k, v]
]
attn = flash_attn_varlen_func(
q,
k,
v,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
)
attn = attn.view(img_k.shape[0], max_seqlen_q, -1).contiguous()
else:
attn, _ = parallel_attention(
(img_q, txt_q),
(img_k, txt_k),
(img_v, txt_v),
img_q_len=img_q.shape[1],
img_kv_len=img_k.shape[1],
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
)
img_attn, txt_attn = attn[:, :img.shape[1]], attn[:, img.shape[1]:]
if CPU_OFFLOAD: torch.cuda.empty_cache()
# Calculate the img bloks.
img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate)
img = img + apply_gate(self.img_mlp(modulate(self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale)), gate=img_mod2_gate)
if CPU_OFFLOAD: torch.cuda.empty_cache()
# Calculate the txt bloks.
txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate)
txt = txt + apply_gate(self.txt_mlp(modulate(self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale)), gate=txt_mod2_gate)
if CPU_OFFLOAD: torch.cuda.empty_cache()
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_width_ratio: float = 4.0,
mlp_act_type: str = 'gelu_tanh',
qk_norm: bool = True,
qk_norm_type: str = 'rms',
qk_scale: float = None,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.deterministic = False
self.hidden_size = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.mlp_hidden_dim = mlp_hidden_dim
self.scale = qk_scale or head_dim**-0.5
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.mlp_act = get_activation_layer(mlp_act_type)()
self.modulation = ModulateDiT(hidden_size, factor=3, act_layer=get_activation_layer("silu"), **factory_kwargs)
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
def forward(
self,
x: torch.Tensor,
vec: torch.Tensor,
txt_len: int,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
) -> torch.Tensor:
mod_shift, mod_scale, mod_gate = (
self.modulation(vec).chunk(3, dim=-1)
)
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
if CPU_OFFLOAD: torch.cuda.empty_cache()
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
if CPU_OFFLOAD: torch.cuda.empty_cache()
# Apply QK-Norm if needed.
q = self.q_norm(q).to(v)
k = self.k_norm(k).to(v)
if CPU_OFFLOAD: torch.cuda.empty_cache()
# Apply RoPE if needed.
if freqs_cis is not None:
img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
img_qq, img_kk = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
assert img_qq.shape == img_q.shape and img_kk.shape == img_k.shape, \
f'img_kk: {img_qq.shape}, img_q: {img_q.shape}, img_kk: {img_kk.shape}, img_k: {img_k.shape}'
img_q, img_k = img_qq, img_kk
q = torch.cat((img_q, txt_q), dim=1)
k = torch.cat((img_k, txt_k), dim=1)
if CPU_OFFLOAD: torch.cuda.empty_cache()
# Compute attention.
if CPU_OFFLOAD or DISABLE_SP:
assert cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1, f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}"
# [b, s+l, a, d] -> [s+l, b, a, d]
q, k, v = [
x.view(x.shape[0] * x.shape[1], *x.shape[2:])
for x in [q, k, v]
]
attn = flash_attn_varlen_func(
q,
k,
v,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
)
attn = attn.view(x.shape[0], max_seqlen_q, -1).contiguous()
else:
img_v, txt_v = v[:, :-txt_len, :, :], v[:, -txt_len:, :, :]
attn, _ = parallel_attention(
(img_q, txt_q),
(img_k, txt_k),
(img_v, txt_v),
img_q_len=img_q.shape[1],
img_kv_len=img_k.shape[1],
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
)
if CPU_OFFLOAD:
torch.cuda.empty_cache()
tmp = torch.cat((attn, self.mlp_act(mlp)), 2)
torch.cuda.empty_cache()
output = self.linear2(tmp)
else:
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return x + apply_gate(output, gate=mod_gate)
class HYVideoDiffusionTransformer(ModelMixin, ConfigMixin):
"""
HunyuanVideo Transformer backbone
Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline.
Reference:
[1] Flux.1: https://github.com/black-forest-labs/flux
[2] MMDiT: http://arxiv.org/abs/2403.03206,
https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion_3/pipeline_stable_diffusion_3.py
"""
@register_to_config
def __init__(
self,
args,
patch_size: list = [1,2,2],
in_channels: int = 4, # Should be VAE.config.latent_channels.
out_channels: int = None,
hidden_size: int = 3072,
mlp_width_ratio: float = 4.0,
mlp_act_type: str = 'gelu_tanh',
num_heads: int = 24,
depth_double_blocks: int = 19,
depth_single_blocks: int = 38,
rope_dim_list: List[int] = [16, 56, 56],
qkv_bias: bool = True,
qk_norm: bool = True,
qk_norm_type: str = 'rms',
guidance_embed: bool = False, # For modulation.
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
# Text projection. Default to linear projection.
# Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831
self.text_projection = args.text_projection
self.text_states_dim = args.text_states_dim
self.use_attention_mask = args.use_attention_mask
self.text_states_dim_2 = args.text_states_dim_2
# Now we only use above configs from args.
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.unpatchify_channels = self.out_channels
self.guidance_embed = guidance_embed
self.rope_dim_list = rope_dim_list
if hidden_size % num_heads != 0:
raise ValueError(
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
)
pe_dim = hidden_size // num_heads
if sum(rope_dim_list) != pe_dim:
raise ValueError(f"Got {rope_dim_list} but expected positional dim {pe_dim}")
self.hidden_size = hidden_size
self.num_heads = num_heads
# image projection
self.img_in = PatchEmbed(
self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs
)
self.ref_in = PatchEmbed(
self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs
)
# text projection
if self.text_projection == "linear":
self.txt_in = TextProjection(
self.text_states_dim,
self.hidden_size,
get_activation_layer("silu"),
**factory_kwargs
)
elif self.text_projection == "single_refiner":
self.txt_in = SingleTokenRefiner(
self.text_states_dim, hidden_size, num_heads, depth=2, **factory_kwargs
)
else:
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
# time modulation
self.time_in = TimestepEmbedder(
self.hidden_size, get_activation_layer("silu"), **factory_kwargs
)
# text modulation
self.vector_in = MLPEmbedder(
self.text_states_dim_2, self.hidden_size, **factory_kwargs
)
# guidance modulation
self.guidance_in = TimestepEmbedder(
self.hidden_size, get_activation_layer("silu"), **factory_kwargs
) if guidance_embed else None
# double blocks
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
**factory_kwargs
)
for _ in range(depth_double_blocks)
]
)
# single blocks
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
**factory_kwargs
)
for _ in range(depth_single_blocks)
]
)
self.final_layer = FinalLayer(
self.hidden_size,
self.patch_size,
self.out_channels,
get_activation_layer("silu"),
**factory_kwargs
)
# -------------------- audio_proj_model --------------------
self.audio_proj = AudioProjNet2(seq_len=10, blocks=5, channels=384, intermediate_dim=1024, output_dim=3072, context_tokens=4)
# -------------------- motion-embeder --------------------
self.motion_exp = TimestepEmbedder(
self.hidden_size // 4,
get_activation_layer("silu"),
**factory_kwargs
)
self.motion_pose = TimestepEmbedder(
self.hidden_size // 4,
get_activation_layer("silu"),
**factory_kwargs
)
self.fps_proj = TimestepEmbedder(
self.hidden_size,
get_activation_layer("silu"),
**factory_kwargs
)
self.before_proj = nn.Linear(self.hidden_size, self.hidden_size)
# -------------------- audio_insert_model --------------------
self.double_stream_list = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
self.single_stream_list = []
self.double_stream_map = {str(i): j for j, i in enumerate(self.double_stream_list)}
self.single_stream_map = {str(i): j+len(self.double_stream_list) for j, i in enumerate(self.single_stream_list)}
self.audio_adapter_blocks = nn.ModuleList([
PerceiverAttentionCA(dim=3072, dim_head=1024, heads=33) for _ in range(len(self.double_stream_list) + len(self.single_stream_list))
])
def enable_deterministic(self):
for block in self.double_blocks:
block.enable_deterministic()
for block in self.single_blocks:
block.enable_deterministic()
def disable_deterministic(self):
for block in self.double_blocks:
block.disable_deterministic()
for block in self.single_blocks:
block.disable_deterministic()
def forward(
self,
x: torch.Tensor,
t: torch.Tensor, # Should be in range(0, 1000).
ref_latents: torch.Tensor=None,
text_states: torch.Tensor = None,
text_mask: torch.Tensor = None, # Now we don't use it.
text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
freqs_cos: Optional[torch.Tensor] = None,
freqs_sin: Optional[torch.Tensor] = None,
guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
return_dict: bool = True,
is_cache: bool = False,
**additional_kwargs,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
out = {}
img = x
txt = text_states
bsz, _, ot, oh, ow = x.shape
tt, th, tw = ot // self.patch_size[0], oh // self.patch_size[1], ow // self.patch_size[2]
# Prepare modulation vectors.
vec = self.time_in(t)
motion_exp_vec = self.motion_exp(additional_kwargs["motion_exp"].view(-1)).view(x.shape[0], -1) # (b, 3072)
vec = vec + motion_exp_vec
motion_pose_vec = self.motion_pose(additional_kwargs["motion_pose"].view(-1)).view(x.shape[0], -1) # (b, 3072)
vec = vec + motion_pose_vec
fps_vec = self.fps_proj(additional_kwargs["fps"]) # (b, 3072)
vec = vec + fps_vec
audio_feature_all = self.audio_proj(additional_kwargs["audio_prompts"])
# text modulation
vec = vec + self.vector_in(text_states_2)
# guidance modulation
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
else:
# our timestep_embedding is merged into guidance_in(TimestepEmbedder)
vec = vec + self.guidance_in(guidance)
if CPU_OFFLOAD: torch.cuda.empty_cache()
# Embed image and text.
ref_latents_first = ref_latents[:, :, :1].clone()
img, shape_mask = self.img_in(img)
ref_latents,_ = self.ref_in(ref_latents)
ref_latents_first,_ = self.img_in(ref_latents_first)
if self.text_projection == "linear":
txt = self.txt_in(txt)
elif self.text_projection == "single_refiner":
# [b, l, h]
txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None)
else:
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
img = self.before_proj(ref_latents) + img
if CPU_OFFLOAD: torch.cuda.empty_cache()
ref_length = ref_latents_first.shape[-2] # [b s c]
img = torch.cat([ref_latents_first, img], dim=-2) # t c
img_len = img.shape[1]
mask_len = img_len - ref_length
if additional_kwargs["face_mask"].shape[2] == 1:
face_mask = additional_kwargs["face_mask"].repeat(1,1,ot,1,1) # repeat if number of mask frame is 1
else:
face_mask = additional_kwargs["face_mask"]
face_mask = torch.nn.functional.interpolate(face_mask, size=[ot, shape_mask[-2], shape_mask[-1]], mode="nearest")
face_mask = face_mask.view(-1,mask_len,1).repeat(1,1,img.shape[-1]).type_as(img)
txt_seq_len = txt.shape[1]
img_seq_len = img.shape[1]
cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len)
cu_seqlens_kv = cu_seqlens_q
max_seqlen_q = img_seq_len + txt_seq_len
max_seqlen_kv = max_seqlen_q
if get_sequence_parallel_state():
sp_size = nccl_info.sp_size
sp_rank = nccl_info.rank_within_group
assert img.shape[1] % sp_size == 0, f"Cannot split video sequence into ulysses SP ({sp_size}) parts evenly"
img = torch.chunk(img, sp_size, dim=1)[sp_rank]
freqs_cos = torch.chunk(freqs_cos, sp_size, dim=0)[sp_rank]
freqs_sin = torch.chunk(freqs_sin, sp_size, dim=0)[sp_rank]
if CPU_OFFLOAD: torch.cuda.empty_cache()
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
# --------------------- Pass through DiT blocks ------------------------
if not is_cache:
for layer_num, block in enumerate(self.double_blocks):
double_block_args = [img, txt, vec, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, freqs_cis]
img, txt = block(*double_block_args)
if CPU_OFFLOAD: torch.cuda.empty_cache()
""" insert audio feature to img """
if layer_num in self.double_stream_list:
if get_sequence_parallel_state():
img = all_gather(img, dim=1)
real_img = img[:,ref_length:].clone().view(bsz, ot, -1, 3072)
real_ref_img = torch.zeros_like(img[:,:ref_length].clone())
audio_feature_pad = audio_feature_all[:,:1].repeat(1,3,1,1)
audio_feature_all_insert = torch.cat([audio_feature_pad, audio_feature_all], dim=1).view(bsz, ot, 16, 3072)
double_idx = self.double_stream_map[str(layer_num)]
real_img = self.audio_adapter_blocks[double_idx](audio_feature_all_insert, real_img).view(bsz, -1, 3072)
img = img + torch.cat((real_ref_img, real_img * face_mask), dim=1)
if get_sequence_parallel_state():
sp_size = nccl_info.sp_size
sp_rank = nccl_info.rank_within_group
assert img.shape[1] % sp_size == 0, f"Cannot split video sequence into ulysses SP ({sp_size}) parts evenly"
img = torch.chunk(img, sp_size, dim=1)[sp_rank]
# Merge txt and img to pass through single stream blocks.
x = torch.cat((img, txt), 1)
# Compatible with MMDiT.
if len(self.single_blocks) > 0:
for layer_num, block in enumerate(self.single_blocks):
if layer_num == (len(self.single_blocks) - 1):
# self.cache_out = x
tmp = x[:, :-txt_seq_len, ...]
if get_sequence_parallel_state():
tmp = all_gather(tmp, dim=1)
self.cache_out = torch.cat([tmp, x[:, -txt_seq_len:, ...]], dim=1)
single_block_args = [x, vec, txt_seq_len, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, (freqs_cos, freqs_sin)]
x = block(*single_block_args)
if CPU_OFFLOAD: torch.cuda.empty_cache()
else:
if get_sequence_parallel_state():
sp_size = nccl_info.sp_size
sp_rank = nccl_info.rank_within_group
tmp, txt = self.cache_out[:, :-txt_seq_len], self.cache_out[:, -txt_seq_len:]
tmp = torch.chunk(tmp, sp_size, dim=1)[sp_rank]
x = torch.cat([tmp, txt], dim=1)
else:
x = self.cache_out
if len(self.single_blocks) > 0:
for layer_num, block in enumerate(self.single_blocks):
if layer_num < (len(self.single_blocks) - 1):
continue
single_block_args = [x, vec, txt_seq_len, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, (freqs_cos, freqs_sin)]
x = block(*single_block_args)
if CPU_OFFLOAD: torch.cuda.empty_cache()
img = x[:, :-txt_seq_len, ...]
if get_sequence_parallel_state():
img = all_gather(img, dim=1)
img = img[:, ref_length:]
# ---------------------------- Final layer ------------------------------
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
img = self.unpatchify(img, tt, th, tw)
if return_dict:
out['x'] = img
return out
return img
def unpatchify(self, x, t, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.unpatchify_channels
pt, ph, pw = self.patch_size
assert t * h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw))
x = torch.einsum('nthwcopq->nctohpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
return imgs
def params_count(self):
counts = {
"double": sum([
sum(p.numel() for p in block.img_attn_qkv.parameters()) +
sum(p.numel() for p in block.img_attn_proj.parameters()) +
sum(p.numel() for p in block.img_mlp.parameters()) +
sum(p.numel() for p in block.txt_attn_qkv.parameters()) +
sum(p.numel() for p in block.txt_attn_proj.parameters()) +
sum(p.numel() for p in block.txt_mlp.parameters())
for block in self.double_blocks
]),
"single": sum([
sum(p.numel() for p in block.linear1.parameters()) +
sum(p.numel() for p in block.linear2.parameters())
for block in self.single_blocks
]),
"total": sum(p.numel() for p in self.parameters()),
}
counts["attn+mlp"] = counts["double"] + counts["single"]
return counts
#################################################################################
# HunyuanVideo Configs #
#################################################################################
HUNYUAN_VIDEO_CONFIG = { # Attn+MLP / Total
'HYVideo-T/2': { # 9.0B / 12.5B
'depth_double_blocks': 20,
'depth_single_blocks': 40,
'rope_dim_list': [16, 56, 56],
'hidden_size': 3072,
'num_heads': 24,
'mlp_width_ratio': 4,
},
}
|