rahul2001 commited on
Commit
967f65c
·
1 Parent(s): 8a55d0a

predict pipeline

Browse files
app.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.Pipeline.predict_pipe import Predict_Pipeline
2
+
3
+ if __name__ == "__main__":
4
+ obj = Predict_Pipeline()
5
+ print(obj.predict(gender = "female",
6
+ race_ethnicity="group C",
7
+ parental_level_of_education="bachelor's degree",
8
+ lunch= "free/reduced",
9
+ test_preparation_course="none",
10
+ reading_score= 75,
11
+ writing_score= 60))
{artifacts → artifact}/model.pkl RENAMED
File without changes
catboost_info/catboost_training.json CHANGED
@@ -1,104 +1,104 @@
1
  {
2
  "meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"RMSE"}],"launch_mode":"Train","parameters":"","iteration_count":100,"learn_sets":["learn"],"name":"experiment"},
3
  "iterations":[
4
- {"learn":[13.99348315],"iteration":0,"passed_time":0.0009078808425,"remaining_time":0.08988020341},
5
- {"learn":[13.08679896],"iteration":1,"passed_time":0.001656349227,"remaining_time":0.08116111212},
6
- {"learn":[12.24911066],"iteration":2,"passed_time":0.002441343709,"remaining_time":0.07893677994},
7
- {"learn":[11.53058054],"iteration":3,"passed_time":0.003688653287,"remaining_time":0.08852767889},
8
- {"learn":[10.84207334],"iteration":4,"passed_time":0.006134500962,"remaining_time":0.1165555183},
9
- {"learn":[10.30180643],"iteration":5,"passed_time":0.007164877086,"remaining_time":0.112249741},
10
- {"learn":[9.78256195],"iteration":6,"passed_time":0.008105593656,"remaining_time":0.1076886014},
11
- {"learn":[9.383051568],"iteration":7,"passed_time":0.009105651879,"remaining_time":0.1047149966},
12
- {"learn":[8.99755936],"iteration":8,"passed_time":0.01003216215,"remaining_time":0.1014363062},
13
- {"learn":[8.583469865],"iteration":9,"passed_time":0.01385409819,"remaining_time":0.1246868837},
14
- {"learn":[8.227667947],"iteration":10,"passed_time":0.01490804508,"remaining_time":0.1206196375},
15
- {"learn":[7.929112785],"iteration":11,"passed_time":0.01590417973,"remaining_time":0.1166306514},
16
- {"learn":[7.684630471],"iteration":12,"passed_time":0.01716042608,"remaining_time":0.1148428514},
17
- {"learn":[7.424891669],"iteration":13,"passed_time":0.01924836,"remaining_time":0.1182399257},
18
- {"learn":[7.201854992],"iteration":14,"passed_time":0.02044547543,"remaining_time":0.1158576941},
19
- {"learn":[6.982008334],"iteration":15,"passed_time":0.02156396337,"remaining_time":0.1132108077},
20
- {"learn":[6.825014781],"iteration":16,"passed_time":0.02316761859,"remaining_time":0.1131124908},
21
- {"learn":[6.660105229],"iteration":17,"passed_time":0.02475638415,"remaining_time":0.1127790834},
22
- {"learn":[6.506800805],"iteration":18,"passed_time":0.02567040859,"remaining_time":0.109437005},
23
- {"learn":[6.376253871],"iteration":19,"passed_time":0.02685888782,"remaining_time":0.1074355513},
24
- {"learn":[6.266699941],"iteration":20,"passed_time":0.02785455539,"remaining_time":0.1047861846},
25
- {"learn":[6.183713198],"iteration":21,"passed_time":0.02890722989,"remaining_time":0.1024892696},
26
- {"learn":[6.095001646],"iteration":22,"passed_time":0.02999068212,"remaining_time":0.100403588},
27
- {"learn":[6.017210026],"iteration":23,"passed_time":0.03079353044,"remaining_time":0.09751284639},
28
- {"learn":[5.926879154],"iteration":24,"passed_time":0.03195719312,"remaining_time":0.09587157936},
29
- {"learn":[5.869115164],"iteration":25,"passed_time":0.03290996022,"remaining_time":0.09366680987},
30
- {"learn":[5.794295297],"iteration":26,"passed_time":0.03390415987,"remaining_time":0.09166680262},
31
- {"learn":[5.736659494],"iteration":27,"passed_time":0.03492940292,"remaining_time":0.08981846465},
32
- {"learn":[5.688737334],"iteration":28,"passed_time":0.03595021006,"remaining_time":0.08801603153},
33
- {"learn":[5.646276694],"iteration":29,"passed_time":0.03689854713,"remaining_time":0.08609660997},
34
- {"learn":[5.60024339],"iteration":30,"passed_time":0.03781376553,"remaining_time":0.08416612328},
35
- {"learn":[5.562148648],"iteration":31,"passed_time":0.03849970214,"remaining_time":0.08181186705},
36
- {"learn":[5.518152613],"iteration":32,"passed_time":0.03942240285,"remaining_time":0.08003942397},
37
- {"learn":[5.469872589],"iteration":33,"passed_time":0.04063732167,"remaining_time":0.07888421266},
38
- {"learn":[5.45057841],"iteration":34,"passed_time":0.04177454476,"remaining_time":0.07758129741},
39
- {"learn":[5.428112506],"iteration":35,"passed_time":0.04280550094,"remaining_time":0.07609866834},
40
- {"learn":[5.402930191],"iteration":36,"passed_time":0.04388156172,"remaining_time":0.07471725374},
41
- {"learn":[5.378422269],"iteration":37,"passed_time":0.04498012229,"remaining_time":0.07338862058},
42
- {"learn":[5.357370046],"iteration":38,"passed_time":0.04596749188,"remaining_time":0.07189787192},
43
- {"learn":[5.323772692],"iteration":39,"passed_time":0.04678363894,"remaining_time":0.0701754584},
44
- {"learn":[5.299500716],"iteration":40,"passed_time":0.04775541791,"remaining_time":0.06872121114},
45
- {"learn":[5.281272066],"iteration":41,"passed_time":0.04875446181,"remaining_time":0.06732759012},
46
- {"learn":[5.263540736],"iteration":42,"passed_time":0.04977096675,"remaining_time":0.06597546755},
47
- {"learn":[5.254240202],"iteration":43,"passed_time":0.05039568405,"remaining_time":0.06413996151},
48
- {"learn":[5.239421602],"iteration":44,"passed_time":0.05127886442,"remaining_time":0.06267416763},
49
- {"learn":[5.217876804],"iteration":45,"passed_time":0.05209356324,"remaining_time":0.06115331337},
50
- {"learn":[5.196339687],"iteration":46,"passed_time":0.05300644726,"remaining_time":0.05977322776},
51
- {"learn":[5.173762601],"iteration":47,"passed_time":0.05396665211,"remaining_time":0.05846387312},
52
- {"learn":[5.157351931],"iteration":48,"passed_time":0.05482300838,"remaining_time":0.05706068219},
53
- {"learn":[5.145163366],"iteration":49,"passed_time":0.05570746355,"remaining_time":0.05570746355},
54
- {"learn":[5.132132849],"iteration":50,"passed_time":0.05652433576,"remaining_time":0.05430769514},
55
- {"learn":[5.121703354],"iteration":51,"passed_time":0.05737686312,"remaining_time":0.05296325827},
56
- {"learn":[5.117554392],"iteration":52,"passed_time":0.05806554039,"remaining_time":0.05149208299},
57
- {"learn":[5.110919902],"iteration":53,"passed_time":0.05889702,"remaining_time":0.05017153555},
58
- {"learn":[5.099775896],"iteration":54,"passed_time":0.05966809078,"remaining_time":0.048819347},
59
- {"learn":[5.081971316],"iteration":55,"passed_time":0.06046943938,"remaining_time":0.04751170237},
60
- {"learn":[5.063256046],"iteration":56,"passed_time":0.06127250017,"remaining_time":0.04622311416},
61
- {"learn":[5.046093491],"iteration":57,"passed_time":0.06231898858,"remaining_time":0.04512754346},
62
- {"learn":[5.032051633],"iteration":58,"passed_time":0.06329932118,"remaining_time":0.04398766387},
63
- {"learn":[5.018495584],"iteration":59,"passed_time":0.06427451276,"remaining_time":0.04284967518},
64
- {"learn":[5.008909962],"iteration":60,"passed_time":0.06514193807,"remaining_time":0.04164812434},
65
- {"learn":[4.99771367],"iteration":61,"passed_time":0.06595840883,"remaining_time":0.04042612154},
66
- {"learn":[4.989916869],"iteration":62,"passed_time":0.06674942323,"remaining_time":0.03920204221},
67
- {"learn":[4.981820588],"iteration":63,"passed_time":0.06750365967,"remaining_time":0.03797080857},
68
- {"learn":[4.960666189],"iteration":64,"passed_time":0.0682814161,"remaining_time":0.03676691636},
69
- {"learn":[4.94706364],"iteration":65,"passed_time":0.06905578479,"remaining_time":0.03557419216},
70
- {"learn":[4.938906099],"iteration":66,"passed_time":0.06987920548,"remaining_time":0.03441811613},
71
- {"learn":[4.920677053],"iteration":67,"passed_time":0.07070150615,"remaining_time":0.03327129701},
72
- {"learn":[4.903676084],"iteration":68,"passed_time":0.07158513287,"remaining_time":0.03216143651},
73
- {"learn":[4.897635401],"iteration":69,"passed_time":0.07238600576,"remaining_time":0.0310225739},
74
- {"learn":[4.889952833],"iteration":70,"passed_time":0.0731368258,"remaining_time":0.029872788},
75
- {"learn":[4.882302534],"iteration":71,"passed_time":0.07396958608,"remaining_time":0.02876595014},
76
- {"learn":[4.873750572],"iteration":72,"passed_time":0.07484307621,"remaining_time":0.02768168572},
77
- {"learn":[4.865386403],"iteration":73,"passed_time":0.07574498793,"remaining_time":0.02661310387},
78
- {"learn":[4.857493367],"iteration":74,"passed_time":0.07664883707,"remaining_time":0.02554961236},
79
- {"learn":[4.848032763],"iteration":75,"passed_time":0.07761476265,"remaining_time":0.02450992505},
80
- {"learn":[4.839634573],"iteration":76,"passed_time":0.07839949526,"remaining_time":0.02341803105},
81
- {"learn":[4.826534384],"iteration":77,"passed_time":0.07930384327,"remaining_time":0.02236775067},
82
- {"learn":[4.81907123],"iteration":78,"passed_time":0.08022577253,"remaining_time":0.02132583827},
83
- {"learn":[4.811944485],"iteration":79,"passed_time":0.08109020394,"remaining_time":0.02027255099},
84
- {"learn":[4.807339578],"iteration":80,"passed_time":0.08185001913,"remaining_time":0.0191993872},
85
- {"learn":[4.79836765],"iteration":81,"passed_time":0.08273623761,"remaining_time":0.01816161313},
86
- {"learn":[4.776924133],"iteration":82,"passed_time":0.08360517576,"remaining_time":0.01712395166},
87
- {"learn":[4.768244651],"iteration":83,"passed_time":0.08444153832,"remaining_time":0.01608410254},
88
- {"learn":[4.761240486],"iteration":84,"passed_time":0.08529687888,"remaining_time":0.01505239039},
89
- {"learn":[4.751984925],"iteration":85,"passed_time":0.08610321961,"remaining_time":0.01401680319},
90
- {"learn":[4.733949017],"iteration":86,"passed_time":0.08701110806,"remaining_time":0.01300165982},
91
- {"learn":[4.727594275],"iteration":87,"passed_time":0.08776094901,"remaining_time":0.01196740214},
92
- {"learn":[4.713457982],"iteration":88,"passed_time":0.08859814866,"remaining_time":0.01095033298},
93
- {"learn":[4.706779065],"iteration":89,"passed_time":0.08934091255,"remaining_time":0.009926768061},
94
- {"learn":[4.696353448],"iteration":90,"passed_time":0.09012222357,"remaining_time":0.008913186947},
95
- {"learn":[4.685069481],"iteration":91,"passed_time":0.09111385737,"remaining_time":0.007922944119},
96
- {"learn":[4.679105072],"iteration":92,"passed_time":0.09211188938,"remaining_time":0.006933152964},
97
- {"learn":[4.669998076],"iteration":93,"passed_time":0.09313726267,"remaining_time":0.00594493166},
98
- {"learn":[4.655194439],"iteration":94,"passed_time":0.0940800635,"remaining_time":0.004951582289},
99
- {"learn":[4.6402433],"iteration":95,"passed_time":0.09499785569,"remaining_time":0.003958243987},
100
- {"learn":[4.620675835],"iteration":96,"passed_time":0.09584848121,"remaining_time":0.002964386017},
101
- {"learn":[4.617949274],"iteration":97,"passed_time":0.0967108681,"remaining_time":0.001973691186},
102
- {"learn":[4.611545659],"iteration":98,"passed_time":0.09758833638,"remaining_time":0.0009857407715},
103
- {"learn":[4.59686047],"iteration":99,"passed_time":0.09843402263,"remaining_time":0}
104
  ]}
 
1
  {
2
  "meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"RMSE"}],"launch_mode":"Train","parameters":"","iteration_count":100,"learn_sets":["learn"],"name":"experiment"},
3
  "iterations":[
4
+ {"learn":[13.99348315],"iteration":0,"passed_time":0.000946210956,"remaining_time":0.09367488464},
5
+ {"learn":[13.08679896],"iteration":1,"passed_time":0.001698156532,"remaining_time":0.08320967005},
6
+ {"learn":[12.24911066],"iteration":2,"passed_time":0.002479205347,"remaining_time":0.0801609729},
7
+ {"learn":[11.53058054],"iteration":3,"passed_time":0.003496165729,"remaining_time":0.0839079775},
8
+ {"learn":[10.84207334],"iteration":4,"passed_time":0.004414454571,"remaining_time":0.08387463685},
9
+ {"learn":[10.30180643],"iteration":5,"passed_time":0.005223290426,"remaining_time":0.08183155001},
10
+ {"learn":[9.78256195],"iteration":6,"passed_time":0.006122288807,"remaining_time":0.08133897986},
11
+ {"learn":[9.383051568],"iteration":7,"passed_time":0.007027443968,"remaining_time":0.08081560563},
12
+ {"learn":[8.99755936],"iteration":8,"passed_time":0.007922072285,"remaining_time":0.0801009531},
13
+ {"learn":[8.583469865],"iteration":9,"passed_time":0.00875983485,"remaining_time":0.07883851365},
14
+ {"learn":[8.227667947],"iteration":10,"passed_time":0.009642668833,"remaining_time":0.07801795692},
15
+ {"learn":[7.929112785],"iteration":11,"passed_time":0.01049409743,"remaining_time":0.0769567145},
16
+ {"learn":[7.684630471],"iteration":12,"passed_time":0.01129318442,"remaining_time":0.07557746496},
17
+ {"learn":[7.424891669],"iteration":13,"passed_time":0.01215531466,"remaining_time":0.07466836151},
18
+ {"learn":[7.201854992],"iteration":14,"passed_time":0.01303087638,"remaining_time":0.07384163281},
19
+ {"learn":[6.982008334],"iteration":15,"passed_time":0.01383644177,"remaining_time":0.07264131928},
20
+ {"learn":[6.825014781],"iteration":16,"passed_time":0.01474457134,"remaining_time":0.07198820122},
21
+ {"learn":[6.660105229],"iteration":17,"passed_time":0.01560888316,"remaining_time":0.07110713439},
22
+ {"learn":[6.506800805],"iteration":18,"passed_time":0.01638003387,"remaining_time":0.0698306707},
23
+ {"learn":[6.376253871],"iteration":19,"passed_time":0.01724454537,"remaining_time":0.06897818146},
24
+ {"learn":[6.266699941],"iteration":20,"passed_time":0.018227583,"remaining_time":0.06857043129},
25
+ {"learn":[6.183713198],"iteration":21,"passed_time":0.01926551243,"remaining_time":0.06830499862},
26
+ {"learn":[6.095001646],"iteration":22,"passed_time":0.02015764066,"remaining_time":0.06748427525},
27
+ {"learn":[6.017210026],"iteration":23,"passed_time":0.02091370377,"remaining_time":0.06622672859},
28
+ {"learn":[5.926879154],"iteration":24,"passed_time":0.02162990395,"remaining_time":0.06488971185},
29
+ {"learn":[5.869115164],"iteration":25,"passed_time":0.0224049017,"remaining_time":0.06376779714},
30
+ {"learn":[5.794295297],"iteration":26,"passed_time":0.02315651667,"remaining_time":0.06260835988},
31
+ {"learn":[5.736659494],"iteration":27,"passed_time":0.02390002681,"remaining_time":0.0614572118},
32
+ {"learn":[5.688737334],"iteration":28,"passed_time":0.02470224435,"remaining_time":0.06047790859},
33
+ {"learn":[5.646276694],"iteration":29,"passed_time":0.02543861143,"remaining_time":0.05935676},
34
+ {"learn":[5.60024339],"iteration":30,"passed_time":0.02634825031,"remaining_time":0.05864610553},
35
+ {"learn":[5.562148648],"iteration":31,"passed_time":0.02699443241,"remaining_time":0.05736316887},
36
+ {"learn":[5.518152613],"iteration":32,"passed_time":0.02775273962,"remaining_time":0.05634647135},
37
+ {"learn":[5.469872589],"iteration":33,"passed_time":0.02853768557,"remaining_time":0.05539668374},
38
+ {"learn":[5.45057841],"iteration":34,"passed_time":0.02929980976,"remaining_time":0.05441393241},
39
+ {"learn":[5.428112506],"iteration":35,"passed_time":0.03004180714,"remaining_time":0.05340765713},
40
+ {"learn":[5.402930191],"iteration":36,"passed_time":0.03080530384,"remaining_time":0.05245227411},
41
+ {"learn":[5.378422269],"iteration":37,"passed_time":0.03173860049,"remaining_time":0.05178403237},
42
+ {"learn":[5.357370046],"iteration":38,"passed_time":0.03261843553,"remaining_time":0.05101857866},
43
+ {"learn":[5.323772692],"iteration":39,"passed_time":0.03343980604,"remaining_time":0.05015970907},
44
+ {"learn":[5.299500716],"iteration":40,"passed_time":0.03425730153,"remaining_time":0.04929709245},
45
+ {"learn":[5.281272066],"iteration":41,"passed_time":0.0350776823,"remaining_time":0.04844060889},
46
+ {"learn":[5.263540736],"iteration":42,"passed_time":0.0358595426,"remaining_time":0.04753474252},
47
+ {"learn":[5.254240202],"iteration":43,"passed_time":0.03634483037,"remaining_time":0.04625705683},
48
+ {"learn":[5.239421602],"iteration":44,"passed_time":0.03714187845,"remaining_time":0.04539562922},
49
+ {"learn":[5.217876804],"iteration":45,"passed_time":0.03793756404,"remaining_time":0.04453540127},
50
+ {"learn":[5.196339687],"iteration":46,"passed_time":0.03868081371,"remaining_time":0.04361878993},
51
+ {"learn":[5.173762601],"iteration":47,"passed_time":0.03945099264,"remaining_time":0.04273857536},
52
+ {"learn":[5.157351931],"iteration":48,"passed_time":0.04018816118,"remaining_time":0.04182849429},
53
+ {"learn":[5.145163366],"iteration":49,"passed_time":0.04097065264,"remaining_time":0.04097065264},
54
+ {"learn":[5.132132849],"iteration":50,"passed_time":0.04177825002,"remaining_time":0.04013988727},
55
+ {"learn":[5.121703354],"iteration":51,"passed_time":0.04255218582,"remaining_time":0.03927894076},
56
+ {"learn":[5.117554392],"iteration":52,"passed_time":0.0431837612,"remaining_time":0.03829503352},
57
+ {"learn":[5.110919902],"iteration":53,"passed_time":0.04400343067,"remaining_time":0.0374844039},
58
+ {"learn":[5.099775896],"iteration":54,"passed_time":0.04478775548,"remaining_time":0.03664452721},
59
+ {"learn":[5.081971316],"iteration":55,"passed_time":0.04558796382,"remaining_time":0.03581911443},
60
+ {"learn":[5.063256046],"iteration":56,"passed_time":0.04647535269,"remaining_time":0.03506035378},
61
+ {"learn":[5.046093491],"iteration":57,"passed_time":0.04729031009,"remaining_time":0.03424470731},
62
+ {"learn":[5.032051633],"iteration":58,"passed_time":0.04805618114,"remaining_time":0.03339497333},
63
+ {"learn":[5.018495584],"iteration":59,"passed_time":0.04885509263,"remaining_time":0.03257006175},
64
+ {"learn":[5.008909962],"iteration":60,"passed_time":0.04959826215,"remaining_time":0.03171036433},
65
+ {"learn":[4.99771367],"iteration":61,"passed_time":0.05035541726,"remaining_time":0.03086299767},
66
+ {"learn":[4.989916869],"iteration":62,"passed_time":0.0510954811,"remaining_time":0.03000845715},
67
+ {"learn":[4.981820588],"iteration":63,"passed_time":0.05189083608,"remaining_time":0.0291885953},
68
+ {"learn":[4.960666189],"iteration":64,"passed_time":0.0526849488,"remaining_time":0.02836881858},
69
+ {"learn":[4.94706364],"iteration":65,"passed_time":0.05345436634,"remaining_time":0.02753709781},
70
+ {"learn":[4.938906099],"iteration":66,"passed_time":0.05424487245,"remaining_time":0.02671762375},
71
+ {"learn":[4.920677053],"iteration":67,"passed_time":0.05499593642,"remaining_time":0.02588044067},
72
+ {"learn":[4.903676084],"iteration":68,"passed_time":0.0557280457,"remaining_time":0.02503723793},
73
+ {"learn":[4.897635401],"iteration":69,"passed_time":0.0565234608,"remaining_time":0.02422434034},
74
+ {"learn":[4.889952833],"iteration":70,"passed_time":0.05724266648,"remaining_time":0.02338080744},
75
+ {"learn":[4.882302534],"iteration":71,"passed_time":0.05798331139,"remaining_time":0.02254906554},
76
+ {"learn":[4.873750572],"iteration":72,"passed_time":0.05872842446,"remaining_time":0.02172147206},
77
+ {"learn":[4.865386403],"iteration":73,"passed_time":0.05949254231,"remaining_time":0.02090278513},
78
+ {"learn":[4.857493367],"iteration":74,"passed_time":0.06030046373,"remaining_time":0.02010015458},
79
+ {"learn":[4.848032763],"iteration":75,"passed_time":0.0611078908,"remaining_time":0.01929722867},
80
+ {"learn":[4.839634573],"iteration":76,"passed_time":0.06185391555,"remaining_time":0.0184758449},
81
+ {"learn":[4.826534384],"iteration":77,"passed_time":0.06259816705,"remaining_time":0.01765589327},
82
+ {"learn":[4.81907123],"iteration":78,"passed_time":0.06340821892,"remaining_time":0.01685534933},
83
+ {"learn":[4.811944485],"iteration":79,"passed_time":0.06416016449,"remaining_time":0.01604004112},
84
+ {"learn":[4.807339578],"iteration":80,"passed_time":0.06493231704,"remaining_time":0.01523103733},
85
+ {"learn":[4.79836765],"iteration":81,"passed_time":0.06569225724,"remaining_time":0.01442025159},
86
+ {"learn":[4.776924133],"iteration":82,"passed_time":0.06648154112,"remaining_time":0.01361670119},
87
+ {"learn":[4.768244651],"iteration":83,"passed_time":0.06725207069,"remaining_time":0.01280991823},
88
+ {"learn":[4.761240486],"iteration":84,"passed_time":0.06804297754,"remaining_time":0.01200758427},
89
+ {"learn":[4.751984925],"iteration":85,"passed_time":0.06879259886,"remaining_time":0.01119879516},
90
+ {"learn":[4.733949017],"iteration":86,"passed_time":0.06960450413,"remaining_time":0.01040067303},
91
+ {"learn":[4.727594275],"iteration":87,"passed_time":0.07035875392,"remaining_time":0.009594375534},
92
+ {"learn":[4.713457982],"iteration":88,"passed_time":0.07110865575,"remaining_time":0.008788710262},
93
+ {"learn":[4.706779065],"iteration":89,"passed_time":0.07184739717,"remaining_time":0.00798304413},
94
+ {"learn":[4.696353448],"iteration":90,"passed_time":0.07266218771,"remaining_time":0.007186370214},
95
+ {"learn":[4.685069481],"iteration":91,"passed_time":0.07340546744,"remaining_time":0.006383084125},
96
+ {"learn":[4.679105072],"iteration":92,"passed_time":0.07422149023,"remaining_time":0.005586563781},
97
+ {"learn":[4.669998076],"iteration":93,"passed_time":0.07506698695,"remaining_time":0.004791509805},
98
+ {"learn":[4.655194439],"iteration":94,"passed_time":0.075862923,"remaining_time":0.003992785421},
99
+ {"learn":[4.6402433],"iteration":95,"passed_time":0.07663090791,"remaining_time":0.003192954496},
100
+ {"learn":[4.620675835],"iteration":96,"passed_time":0.07743521929,"remaining_time":0.002394903689},
101
+ {"learn":[4.617949274],"iteration":97,"passed_time":0.07815445502,"remaining_time":0.001594988878},
102
+ {"learn":[4.611545659],"iteration":98,"passed_time":0.07892583615,"remaining_time":0.0007972306682},
103
+ {"learn":[4.59686047],"iteration":99,"passed_time":0.07972493799,"remaining_time":0}
104
  ]}
catboost_info/learn/events.out.tfevents CHANGED
Binary files a/catboost_info/learn/events.out.tfevents and b/catboost_info/learn/events.out.tfevents differ
 
catboost_info/time_left.tsv CHANGED
@@ -1,101 +1,101 @@
1
  iter Passed Remaining
2
- 0 0 89
3
- 1 1 81
4
- 2 2 78
5
- 3 3 88
6
- 4 6 116
7
- 5 7 112
8
- 6 8 107
9
- 7 9 104
10
- 8 10 101
11
- 9 13 124
12
- 10 14 120
13
- 11 15 116
14
- 12 17 114
15
- 13 19 118
16
- 14 20 115
17
- 15 21 113
18
- 16 23 113
19
- 17 24 112
20
- 18 25 109
21
- 19 26 107
22
- 20 27 104
23
- 21 28 102
24
- 22 29 100
25
- 23 30 97
26
- 24 31 95
27
- 25 32 93
28
- 26 33 91
29
- 27 34 89
30
- 28 35 88
31
- 29 36 86
32
- 30 37 84
33
- 31 38 81
34
- 32 39 80
35
- 33 40 78
36
- 34 41 77
37
- 35 42 76
38
- 36 43 74
39
- 37 44 73
40
- 38 45 71
41
- 39 46 70
42
- 40 47 68
43
- 41 48 67
44
- 42 49 65
45
- 43 50 64
46
- 44 51 62
47
- 45 52 61
48
- 46 53 59
49
- 47 53 58
50
- 48 54 57
51
- 49 55 55
52
- 50 56 54
53
- 51 57 52
54
- 52 58 51
55
- 53 58 50
56
- 54 59 48
57
- 55 60 47
58
- 56 61 46
59
- 57 62 45
60
- 58 63 43
61
- 59 64 42
62
- 60 65 41
63
- 61 65 40
64
- 62 66 39
65
- 63 67 37
66
- 64 68 36
67
- 65 69 35
68
- 66 69 34
69
- 67 70 33
70
- 68 71 32
71
- 69 72 31
72
- 70 73 29
73
- 71 73 28
74
- 72 74 27
75
- 73 75 26
76
- 74 76 25
77
- 75 77 24
78
- 76 78 23
79
- 77 79 22
80
- 78 80 21
81
- 79 81 20
82
- 80 81 19
83
- 81 82 18
84
- 82 83 17
85
- 83 84 16
86
- 84 85 15
87
- 85 86 14
88
- 86 87 13
89
- 87 87 11
90
- 88 88 10
91
- 89 89 9
92
- 90 90 8
93
- 91 91 7
94
- 92 92 6
95
- 93 93 5
96
- 94 94 4
97
- 95 94 3
98
- 96 95 2
99
- 97 96 1
100
- 98 97 0
101
- 99 98 0
 
1
  iter Passed Remaining
2
+ 0 0 93
3
+ 1 1 83
4
+ 2 2 80
5
+ 3 3 83
6
+ 4 4 83
7
+ 5 5 81
8
+ 6 6 81
9
+ 7 7 80
10
+ 8 7 80
11
+ 9 8 78
12
+ 10 9 78
13
+ 11 10 76
14
+ 12 11 75
15
+ 13 12 74
16
+ 14 13 73
17
+ 15 13 72
18
+ 16 14 71
19
+ 17 15 71
20
+ 18 16 69
21
+ 19 17 68
22
+ 20 18 68
23
+ 21 19 68
24
+ 22 20 67
25
+ 23 20 66
26
+ 24 21 64
27
+ 25 22 63
28
+ 26 23 62
29
+ 27 23 61
30
+ 28 24 60
31
+ 29 25 59
32
+ 30 26 58
33
+ 31 26 57
34
+ 32 27 56
35
+ 33 28 55
36
+ 34 29 54
37
+ 35 30 53
38
+ 36 30 52
39
+ 37 31 51
40
+ 38 32 51
41
+ 39 33 50
42
+ 40 34 49
43
+ 41 35 48
44
+ 42 35 47
45
+ 43 36 46
46
+ 44 37 45
47
+ 45 37 44
48
+ 46 38 43
49
+ 47 39 42
50
+ 48 40 41
51
+ 49 40 40
52
+ 50 41 40
53
+ 51 42 39
54
+ 52 43 38
55
+ 53 44 37
56
+ 54 44 36
57
+ 55 45 35
58
+ 56 46 35
59
+ 57 47 34
60
+ 58 48 33
61
+ 59 48 32
62
+ 60 49 31
63
+ 61 50 30
64
+ 62 51 30
65
+ 63 51 29
66
+ 64 52 28
67
+ 65 53 27
68
+ 66 54 26
69
+ 67 54 25
70
+ 68 55 25
71
+ 69 56 24
72
+ 70 57 23
73
+ 71 57 22
74
+ 72 58 21
75
+ 73 59 20
76
+ 74 60 20
77
+ 75 61 19
78
+ 76 61 18
79
+ 77 62 17
80
+ 78 63 16
81
+ 79 64 16
82
+ 80 64 15
83
+ 81 65 14
84
+ 82 66 13
85
+ 83 67 12
86
+ 84 68 12
87
+ 85 68 11
88
+ 86 69 10
89
+ 87 70 9
90
+ 88 71 8
91
+ 89 71 7
92
+ 90 72 7
93
+ 91 73 6
94
+ 92 74 5
95
+ 93 75 4
96
+ 94 75 3
97
+ 95 76 3
98
+ 96 77 2
99
+ 97 78 1
100
+ 98 78 0
101
+ 99 79 0
src/Components/model_tranier.py CHANGED
@@ -26,7 +26,7 @@ from src.exception import CustomException
26
  @dataclass
27
 
28
  class Model_training_config:
29
- trained_model_path = os.path.join("artifacts","model.pkl")
30
  class Model_trainer:
31
  def __init__(self) -> None:
32
  self.model_trainer_config = Model_training_config()
 
26
  @dataclass
27
 
28
  class Model_training_config:
29
+ trained_model_path = os.path.join("artifact","model.pkl")
30
  class Model_trainer:
31
  def __init__(self) -> None:
32
  self.model_trainer_config = Model_training_config()
src/Pipeline/predict_pipe.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.utils import load_Obj
2
+ from src.utils import CustomException
3
+
4
+ import sys
5
+ import pandas as pd
6
+
7
+
8
+
9
+ class Predict_Pipeline():
10
+ model_path = "artifact/model.pkl"
11
+ preprocessor_path = "artifact/Preprocessor.pkl"
12
+ def __init__(self):
13
+ print("model is loading")
14
+ self.model = load_Obj(self.model_path)
15
+ self.preprocessor = load_Obj(self.preprocessor_path)
16
+ print("model is loaded")
17
+ def predict(self,
18
+ gender: str,
19
+ race_ethnicity: str,
20
+ parental_level_of_education:str,
21
+ lunch: str,
22
+ test_preparation_course: str,
23
+ reading_score: int,
24
+ writing_score: int):
25
+ print("data is loading ")
26
+ data = CustomData(
27
+ gender,
28
+ race_ethnicity,
29
+ parental_level_of_education,
30
+ lunch,
31
+ test_preparation_course,
32
+ reading_score,
33
+ writing_score).get_data_as_data_frame()
34
+ print("data is loaded")
35
+ data_scaled = self.preprocessor.transform(data)
36
+ pred = self.model.predict(data_scaled)
37
+ print("prediction done")
38
+ return pred
39
+ class CustomData:
40
+ def __init__( self,
41
+ gender: str,
42
+ race_ethnicity: str,
43
+ parental_level_of_education,
44
+ lunch: str,
45
+ test_preparation_course: str,
46
+ reading_score: int,
47
+ writing_score: int):
48
+
49
+ self.gender = gender
50
+
51
+ self.race_ethnicity = race_ethnicity
52
+
53
+ self.parental_level_of_education = parental_level_of_education
54
+
55
+ self.lunch = lunch
56
+
57
+ self.test_preparation_course = test_preparation_course
58
+
59
+ self.reading_score = reading_score
60
+
61
+ self.writing_score = writing_score
62
+
63
+ def get_data_as_data_frame(self):
64
+ try:
65
+ custom_data_input_dict = {
66
+ "gender": [self.gender],
67
+ "race_ethnicity": [self.race_ethnicity],
68
+ "parental_level_of_education": [self.parental_level_of_education],
69
+ "lunch": [self.lunch],
70
+ "test_preparation_course": [self.test_preparation_course],
71
+ "reading_score": [self.reading_score],
72
+ "writing_score": [self.writing_score],
73
+ }
74
+
75
+ return pd.DataFrame(custom_data_input_dict)
76
+
77
+ except Exception as e:
78
+ raise CustomException(e, sys)
79
+
src/utils.py CHANGED
@@ -25,6 +25,13 @@ def save_object(file_path , obj):
25
  pickle.dump(obj,file_obj)
26
  except Exception as e:
27
  raise CustomException(e,sys)
 
 
 
 
 
 
 
28
 
29
  def evaluate_model(X,Y,X_test,Y_test,Models,Param):
30
  try:
 
25
  pickle.dump(obj,file_obj)
26
  except Exception as e:
27
  raise CustomException(e,sys)
28
+ def load_Obj(file_path):
29
+ try:
30
+ with open(file_path,"rb") as file_obj:
31
+ return dill.load(file_obj)
32
+ except Exception as e:
33
+ raise CustomException(e,sys)
34
+
35
 
36
  def evaluate_model(X,Y,X_test,Y_test,Models,Param):
37
  try: