Spaces:
Sleeping
Sleeping
predict pipeline
Browse files- app.py +11 -0
- {artifacts → artifact}/model.pkl +0 -0
- catboost_info/catboost_training.json +100 -100
- catboost_info/learn/events.out.tfevents +0 -0
- catboost_info/time_left.tsv +100 -100
- src/Components/model_tranier.py +1 -1
- src/Pipeline/predict_pipe.py +79 -0
- src/utils.py +7 -0
app.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from src.Pipeline.predict_pipe import Predict_Pipeline
|
2 |
+
|
3 |
+
if __name__ == "__main__":
|
4 |
+
obj = Predict_Pipeline()
|
5 |
+
print(obj.predict(gender = "female",
|
6 |
+
race_ethnicity="group C",
|
7 |
+
parental_level_of_education="bachelor's degree",
|
8 |
+
lunch= "free/reduced",
|
9 |
+
test_preparation_course="none",
|
10 |
+
reading_score= 75,
|
11 |
+
writing_score= 60))
|
{artifacts → artifact}/model.pkl
RENAMED
File without changes
|
catboost_info/catboost_training.json
CHANGED
@@ -1,104 +1,104 @@
|
|
1 |
{
|
2 |
"meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"RMSE"}],"launch_mode":"Train","parameters":"","iteration_count":100,"learn_sets":["learn"],"name":"experiment"},
|
3 |
"iterations":[
|
4 |
-
{"learn":[13.99348315],"iteration":0,"passed_time":0.
|
5 |
-
{"learn":[13.08679896],"iteration":1,"passed_time":0.
|
6 |
-
{"learn":[12.24911066],"iteration":2,"passed_time":0.
|
7 |
-
{"learn":[11.53058054],"iteration":3,"passed_time":0.
|
8 |
-
{"learn":[10.84207334],"iteration":4,"passed_time":0.
|
9 |
-
{"learn":[10.30180643],"iteration":5,"passed_time":0.
|
10 |
-
{"learn":[9.78256195],"iteration":6,"passed_time":0.
|
11 |
-
{"learn":[9.383051568],"iteration":7,"passed_time":0.
|
12 |
-
{"learn":[8.99755936],"iteration":8,"passed_time":0.
|
13 |
-
{"learn":[8.583469865],"iteration":9,"passed_time":0.
|
14 |
-
{"learn":[8.227667947],"iteration":10,"passed_time":0.
|
15 |
-
{"learn":[7.929112785],"iteration":11,"passed_time":0.
|
16 |
-
{"learn":[7.684630471],"iteration":12,"passed_time":0.
|
17 |
-
{"learn":[7.424891669],"iteration":13,"passed_time":0.
|
18 |
-
{"learn":[7.201854992],"iteration":14,"passed_time":0.
|
19 |
-
{"learn":[6.982008334],"iteration":15,"passed_time":0.
|
20 |
-
{"learn":[6.825014781],"iteration":16,"passed_time":0.
|
21 |
-
{"learn":[6.660105229],"iteration":17,"passed_time":0.
|
22 |
-
{"learn":[6.506800805],"iteration":18,"passed_time":0.
|
23 |
-
{"learn":[6.376253871],"iteration":19,"passed_time":0.
|
24 |
-
{"learn":[6.266699941],"iteration":20,"passed_time":0.
|
25 |
-
{"learn":[6.183713198],"iteration":21,"passed_time":0.
|
26 |
-
{"learn":[6.095001646],"iteration":22,"passed_time":0.
|
27 |
-
{"learn":[6.017210026],"iteration":23,"passed_time":0.
|
28 |
-
{"learn":[5.926879154],"iteration":24,"passed_time":0.
|
29 |
-
{"learn":[5.869115164],"iteration":25,"passed_time":0.
|
30 |
-
{"learn":[5.794295297],"iteration":26,"passed_time":0.
|
31 |
-
{"learn":[5.736659494],"iteration":27,"passed_time":0.
|
32 |
-
{"learn":[5.688737334],"iteration":28,"passed_time":0.
|
33 |
-
{"learn":[5.646276694],"iteration":29,"passed_time":0.
|
34 |
-
{"learn":[5.60024339],"iteration":30,"passed_time":0.
|
35 |
-
{"learn":[5.562148648],"iteration":31,"passed_time":0.
|
36 |
-
{"learn":[5.518152613],"iteration":32,"passed_time":0.
|
37 |
-
{"learn":[5.469872589],"iteration":33,"passed_time":0.
|
38 |
-
{"learn":[5.45057841],"iteration":34,"passed_time":0.
|
39 |
-
{"learn":[5.428112506],"iteration":35,"passed_time":0.
|
40 |
-
{"learn":[5.402930191],"iteration":36,"passed_time":0.
|
41 |
-
{"learn":[5.378422269],"iteration":37,"passed_time":0.
|
42 |
-
{"learn":[5.357370046],"iteration":38,"passed_time":0.
|
43 |
-
{"learn":[5.323772692],"iteration":39,"passed_time":0.
|
44 |
-
{"learn":[5.299500716],"iteration":40,"passed_time":0.
|
45 |
-
{"learn":[5.281272066],"iteration":41,"passed_time":0.
|
46 |
-
{"learn":[5.263540736],"iteration":42,"passed_time":0.
|
47 |
-
{"learn":[5.254240202],"iteration":43,"passed_time":0.
|
48 |
-
{"learn":[5.239421602],"iteration":44,"passed_time":0.
|
49 |
-
{"learn":[5.217876804],"iteration":45,"passed_time":0.
|
50 |
-
{"learn":[5.196339687],"iteration":46,"passed_time":0.
|
51 |
-
{"learn":[5.173762601],"iteration":47,"passed_time":0.
|
52 |
-
{"learn":[5.157351931],"iteration":48,"passed_time":0.
|
53 |
-
{"learn":[5.145163366],"iteration":49,"passed_time":0.
|
54 |
-
{"learn":[5.132132849],"iteration":50,"passed_time":0.
|
55 |
-
{"learn":[5.121703354],"iteration":51,"passed_time":0.
|
56 |
-
{"learn":[5.117554392],"iteration":52,"passed_time":0.
|
57 |
-
{"learn":[5.110919902],"iteration":53,"passed_time":0.
|
58 |
-
{"learn":[5.099775896],"iteration":54,"passed_time":0.
|
59 |
-
{"learn":[5.081971316],"iteration":55,"passed_time":0.
|
60 |
-
{"learn":[5.063256046],"iteration":56,"passed_time":0.
|
61 |
-
{"learn":[5.046093491],"iteration":57,"passed_time":0.
|
62 |
-
{"learn":[5.032051633],"iteration":58,"passed_time":0.
|
63 |
-
{"learn":[5.018495584],"iteration":59,"passed_time":0.
|
64 |
-
{"learn":[5.008909962],"iteration":60,"passed_time":0.
|
65 |
-
{"learn":[4.99771367],"iteration":61,"passed_time":0.
|
66 |
-
{"learn":[4.989916869],"iteration":62,"passed_time":0.
|
67 |
-
{"learn":[4.981820588],"iteration":63,"passed_time":0.
|
68 |
-
{"learn":[4.960666189],"iteration":64,"passed_time":0.
|
69 |
-
{"learn":[4.94706364],"iteration":65,"passed_time":0.
|
70 |
-
{"learn":[4.938906099],"iteration":66,"passed_time":0.
|
71 |
-
{"learn":[4.920677053],"iteration":67,"passed_time":0.
|
72 |
-
{"learn":[4.903676084],"iteration":68,"passed_time":0.
|
73 |
-
{"learn":[4.897635401],"iteration":69,"passed_time":0.
|
74 |
-
{"learn":[4.889952833],"iteration":70,"passed_time":0.
|
75 |
-
{"learn":[4.882302534],"iteration":71,"passed_time":0.
|
76 |
-
{"learn":[4.873750572],"iteration":72,"passed_time":0.
|
77 |
-
{"learn":[4.865386403],"iteration":73,"passed_time":0.
|
78 |
-
{"learn":[4.857493367],"iteration":74,"passed_time":0.
|
79 |
-
{"learn":[4.848032763],"iteration":75,"passed_time":0.
|
80 |
-
{"learn":[4.839634573],"iteration":76,"passed_time":0.
|
81 |
-
{"learn":[4.826534384],"iteration":77,"passed_time":0.
|
82 |
-
{"learn":[4.81907123],"iteration":78,"passed_time":0.
|
83 |
-
{"learn":[4.811944485],"iteration":79,"passed_time":0.
|
84 |
-
{"learn":[4.807339578],"iteration":80,"passed_time":0.
|
85 |
-
{"learn":[4.79836765],"iteration":81,"passed_time":0.
|
86 |
-
{"learn":[4.776924133],"iteration":82,"passed_time":0.
|
87 |
-
{"learn":[4.768244651],"iteration":83,"passed_time":0.
|
88 |
-
{"learn":[4.761240486],"iteration":84,"passed_time":0.
|
89 |
-
{"learn":[4.751984925],"iteration":85,"passed_time":0.
|
90 |
-
{"learn":[4.733949017],"iteration":86,"passed_time":0.
|
91 |
-
{"learn":[4.727594275],"iteration":87,"passed_time":0.
|
92 |
-
{"learn":[4.713457982],"iteration":88,"passed_time":0.
|
93 |
-
{"learn":[4.706779065],"iteration":89,"passed_time":0.
|
94 |
-
{"learn":[4.696353448],"iteration":90,"passed_time":0.
|
95 |
-
{"learn":[4.685069481],"iteration":91,"passed_time":0.
|
96 |
-
{"learn":[4.679105072],"iteration":92,"passed_time":0.
|
97 |
-
{"learn":[4.669998076],"iteration":93,"passed_time":0.
|
98 |
-
{"learn":[4.655194439],"iteration":94,"passed_time":0.
|
99 |
-
{"learn":[4.6402433],"iteration":95,"passed_time":0.
|
100 |
-
{"learn":[4.620675835],"iteration":96,"passed_time":0.
|
101 |
-
{"learn":[4.617949274],"iteration":97,"passed_time":0.
|
102 |
-
{"learn":[4.611545659],"iteration":98,"passed_time":0.
|
103 |
-
{"learn":[4.59686047],"iteration":99,"passed_time":0.
|
104 |
]}
|
|
|
1 |
{
|
2 |
"meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"RMSE"}],"launch_mode":"Train","parameters":"","iteration_count":100,"learn_sets":["learn"],"name":"experiment"},
|
3 |
"iterations":[
|
4 |
+
{"learn":[13.99348315],"iteration":0,"passed_time":0.000946210956,"remaining_time":0.09367488464},
|
5 |
+
{"learn":[13.08679896],"iteration":1,"passed_time":0.001698156532,"remaining_time":0.08320967005},
|
6 |
+
{"learn":[12.24911066],"iteration":2,"passed_time":0.002479205347,"remaining_time":0.0801609729},
|
7 |
+
{"learn":[11.53058054],"iteration":3,"passed_time":0.003496165729,"remaining_time":0.0839079775},
|
8 |
+
{"learn":[10.84207334],"iteration":4,"passed_time":0.004414454571,"remaining_time":0.08387463685},
|
9 |
+
{"learn":[10.30180643],"iteration":5,"passed_time":0.005223290426,"remaining_time":0.08183155001},
|
10 |
+
{"learn":[9.78256195],"iteration":6,"passed_time":0.006122288807,"remaining_time":0.08133897986},
|
11 |
+
{"learn":[9.383051568],"iteration":7,"passed_time":0.007027443968,"remaining_time":0.08081560563},
|
12 |
+
{"learn":[8.99755936],"iteration":8,"passed_time":0.007922072285,"remaining_time":0.0801009531},
|
13 |
+
{"learn":[8.583469865],"iteration":9,"passed_time":0.00875983485,"remaining_time":0.07883851365},
|
14 |
+
{"learn":[8.227667947],"iteration":10,"passed_time":0.009642668833,"remaining_time":0.07801795692},
|
15 |
+
{"learn":[7.929112785],"iteration":11,"passed_time":0.01049409743,"remaining_time":0.0769567145},
|
16 |
+
{"learn":[7.684630471],"iteration":12,"passed_time":0.01129318442,"remaining_time":0.07557746496},
|
17 |
+
{"learn":[7.424891669],"iteration":13,"passed_time":0.01215531466,"remaining_time":0.07466836151},
|
18 |
+
{"learn":[7.201854992],"iteration":14,"passed_time":0.01303087638,"remaining_time":0.07384163281},
|
19 |
+
{"learn":[6.982008334],"iteration":15,"passed_time":0.01383644177,"remaining_time":0.07264131928},
|
20 |
+
{"learn":[6.825014781],"iteration":16,"passed_time":0.01474457134,"remaining_time":0.07198820122},
|
21 |
+
{"learn":[6.660105229],"iteration":17,"passed_time":0.01560888316,"remaining_time":0.07110713439},
|
22 |
+
{"learn":[6.506800805],"iteration":18,"passed_time":0.01638003387,"remaining_time":0.0698306707},
|
23 |
+
{"learn":[6.376253871],"iteration":19,"passed_time":0.01724454537,"remaining_time":0.06897818146},
|
24 |
+
{"learn":[6.266699941],"iteration":20,"passed_time":0.018227583,"remaining_time":0.06857043129},
|
25 |
+
{"learn":[6.183713198],"iteration":21,"passed_time":0.01926551243,"remaining_time":0.06830499862},
|
26 |
+
{"learn":[6.095001646],"iteration":22,"passed_time":0.02015764066,"remaining_time":0.06748427525},
|
27 |
+
{"learn":[6.017210026],"iteration":23,"passed_time":0.02091370377,"remaining_time":0.06622672859},
|
28 |
+
{"learn":[5.926879154],"iteration":24,"passed_time":0.02162990395,"remaining_time":0.06488971185},
|
29 |
+
{"learn":[5.869115164],"iteration":25,"passed_time":0.0224049017,"remaining_time":0.06376779714},
|
30 |
+
{"learn":[5.794295297],"iteration":26,"passed_time":0.02315651667,"remaining_time":0.06260835988},
|
31 |
+
{"learn":[5.736659494],"iteration":27,"passed_time":0.02390002681,"remaining_time":0.0614572118},
|
32 |
+
{"learn":[5.688737334],"iteration":28,"passed_time":0.02470224435,"remaining_time":0.06047790859},
|
33 |
+
{"learn":[5.646276694],"iteration":29,"passed_time":0.02543861143,"remaining_time":0.05935676},
|
34 |
+
{"learn":[5.60024339],"iteration":30,"passed_time":0.02634825031,"remaining_time":0.05864610553},
|
35 |
+
{"learn":[5.562148648],"iteration":31,"passed_time":0.02699443241,"remaining_time":0.05736316887},
|
36 |
+
{"learn":[5.518152613],"iteration":32,"passed_time":0.02775273962,"remaining_time":0.05634647135},
|
37 |
+
{"learn":[5.469872589],"iteration":33,"passed_time":0.02853768557,"remaining_time":0.05539668374},
|
38 |
+
{"learn":[5.45057841],"iteration":34,"passed_time":0.02929980976,"remaining_time":0.05441393241},
|
39 |
+
{"learn":[5.428112506],"iteration":35,"passed_time":0.03004180714,"remaining_time":0.05340765713},
|
40 |
+
{"learn":[5.402930191],"iteration":36,"passed_time":0.03080530384,"remaining_time":0.05245227411},
|
41 |
+
{"learn":[5.378422269],"iteration":37,"passed_time":0.03173860049,"remaining_time":0.05178403237},
|
42 |
+
{"learn":[5.357370046],"iteration":38,"passed_time":0.03261843553,"remaining_time":0.05101857866},
|
43 |
+
{"learn":[5.323772692],"iteration":39,"passed_time":0.03343980604,"remaining_time":0.05015970907},
|
44 |
+
{"learn":[5.299500716],"iteration":40,"passed_time":0.03425730153,"remaining_time":0.04929709245},
|
45 |
+
{"learn":[5.281272066],"iteration":41,"passed_time":0.0350776823,"remaining_time":0.04844060889},
|
46 |
+
{"learn":[5.263540736],"iteration":42,"passed_time":0.0358595426,"remaining_time":0.04753474252},
|
47 |
+
{"learn":[5.254240202],"iteration":43,"passed_time":0.03634483037,"remaining_time":0.04625705683},
|
48 |
+
{"learn":[5.239421602],"iteration":44,"passed_time":0.03714187845,"remaining_time":0.04539562922},
|
49 |
+
{"learn":[5.217876804],"iteration":45,"passed_time":0.03793756404,"remaining_time":0.04453540127},
|
50 |
+
{"learn":[5.196339687],"iteration":46,"passed_time":0.03868081371,"remaining_time":0.04361878993},
|
51 |
+
{"learn":[5.173762601],"iteration":47,"passed_time":0.03945099264,"remaining_time":0.04273857536},
|
52 |
+
{"learn":[5.157351931],"iteration":48,"passed_time":0.04018816118,"remaining_time":0.04182849429},
|
53 |
+
{"learn":[5.145163366],"iteration":49,"passed_time":0.04097065264,"remaining_time":0.04097065264},
|
54 |
+
{"learn":[5.132132849],"iteration":50,"passed_time":0.04177825002,"remaining_time":0.04013988727},
|
55 |
+
{"learn":[5.121703354],"iteration":51,"passed_time":0.04255218582,"remaining_time":0.03927894076},
|
56 |
+
{"learn":[5.117554392],"iteration":52,"passed_time":0.0431837612,"remaining_time":0.03829503352},
|
57 |
+
{"learn":[5.110919902],"iteration":53,"passed_time":0.04400343067,"remaining_time":0.0374844039},
|
58 |
+
{"learn":[5.099775896],"iteration":54,"passed_time":0.04478775548,"remaining_time":0.03664452721},
|
59 |
+
{"learn":[5.081971316],"iteration":55,"passed_time":0.04558796382,"remaining_time":0.03581911443},
|
60 |
+
{"learn":[5.063256046],"iteration":56,"passed_time":0.04647535269,"remaining_time":0.03506035378},
|
61 |
+
{"learn":[5.046093491],"iteration":57,"passed_time":0.04729031009,"remaining_time":0.03424470731},
|
62 |
+
{"learn":[5.032051633],"iteration":58,"passed_time":0.04805618114,"remaining_time":0.03339497333},
|
63 |
+
{"learn":[5.018495584],"iteration":59,"passed_time":0.04885509263,"remaining_time":0.03257006175},
|
64 |
+
{"learn":[5.008909962],"iteration":60,"passed_time":0.04959826215,"remaining_time":0.03171036433},
|
65 |
+
{"learn":[4.99771367],"iteration":61,"passed_time":0.05035541726,"remaining_time":0.03086299767},
|
66 |
+
{"learn":[4.989916869],"iteration":62,"passed_time":0.0510954811,"remaining_time":0.03000845715},
|
67 |
+
{"learn":[4.981820588],"iteration":63,"passed_time":0.05189083608,"remaining_time":0.0291885953},
|
68 |
+
{"learn":[4.960666189],"iteration":64,"passed_time":0.0526849488,"remaining_time":0.02836881858},
|
69 |
+
{"learn":[4.94706364],"iteration":65,"passed_time":0.05345436634,"remaining_time":0.02753709781},
|
70 |
+
{"learn":[4.938906099],"iteration":66,"passed_time":0.05424487245,"remaining_time":0.02671762375},
|
71 |
+
{"learn":[4.920677053],"iteration":67,"passed_time":0.05499593642,"remaining_time":0.02588044067},
|
72 |
+
{"learn":[4.903676084],"iteration":68,"passed_time":0.0557280457,"remaining_time":0.02503723793},
|
73 |
+
{"learn":[4.897635401],"iteration":69,"passed_time":0.0565234608,"remaining_time":0.02422434034},
|
74 |
+
{"learn":[4.889952833],"iteration":70,"passed_time":0.05724266648,"remaining_time":0.02338080744},
|
75 |
+
{"learn":[4.882302534],"iteration":71,"passed_time":0.05798331139,"remaining_time":0.02254906554},
|
76 |
+
{"learn":[4.873750572],"iteration":72,"passed_time":0.05872842446,"remaining_time":0.02172147206},
|
77 |
+
{"learn":[4.865386403],"iteration":73,"passed_time":0.05949254231,"remaining_time":0.02090278513},
|
78 |
+
{"learn":[4.857493367],"iteration":74,"passed_time":0.06030046373,"remaining_time":0.02010015458},
|
79 |
+
{"learn":[4.848032763],"iteration":75,"passed_time":0.0611078908,"remaining_time":0.01929722867},
|
80 |
+
{"learn":[4.839634573],"iteration":76,"passed_time":0.06185391555,"remaining_time":0.0184758449},
|
81 |
+
{"learn":[4.826534384],"iteration":77,"passed_time":0.06259816705,"remaining_time":0.01765589327},
|
82 |
+
{"learn":[4.81907123],"iteration":78,"passed_time":0.06340821892,"remaining_time":0.01685534933},
|
83 |
+
{"learn":[4.811944485],"iteration":79,"passed_time":0.06416016449,"remaining_time":0.01604004112},
|
84 |
+
{"learn":[4.807339578],"iteration":80,"passed_time":0.06493231704,"remaining_time":0.01523103733},
|
85 |
+
{"learn":[4.79836765],"iteration":81,"passed_time":0.06569225724,"remaining_time":0.01442025159},
|
86 |
+
{"learn":[4.776924133],"iteration":82,"passed_time":0.06648154112,"remaining_time":0.01361670119},
|
87 |
+
{"learn":[4.768244651],"iteration":83,"passed_time":0.06725207069,"remaining_time":0.01280991823},
|
88 |
+
{"learn":[4.761240486],"iteration":84,"passed_time":0.06804297754,"remaining_time":0.01200758427},
|
89 |
+
{"learn":[4.751984925],"iteration":85,"passed_time":0.06879259886,"remaining_time":0.01119879516},
|
90 |
+
{"learn":[4.733949017],"iteration":86,"passed_time":0.06960450413,"remaining_time":0.01040067303},
|
91 |
+
{"learn":[4.727594275],"iteration":87,"passed_time":0.07035875392,"remaining_time":0.009594375534},
|
92 |
+
{"learn":[4.713457982],"iteration":88,"passed_time":0.07110865575,"remaining_time":0.008788710262},
|
93 |
+
{"learn":[4.706779065],"iteration":89,"passed_time":0.07184739717,"remaining_time":0.00798304413},
|
94 |
+
{"learn":[4.696353448],"iteration":90,"passed_time":0.07266218771,"remaining_time":0.007186370214},
|
95 |
+
{"learn":[4.685069481],"iteration":91,"passed_time":0.07340546744,"remaining_time":0.006383084125},
|
96 |
+
{"learn":[4.679105072],"iteration":92,"passed_time":0.07422149023,"remaining_time":0.005586563781},
|
97 |
+
{"learn":[4.669998076],"iteration":93,"passed_time":0.07506698695,"remaining_time":0.004791509805},
|
98 |
+
{"learn":[4.655194439],"iteration":94,"passed_time":0.075862923,"remaining_time":0.003992785421},
|
99 |
+
{"learn":[4.6402433],"iteration":95,"passed_time":0.07663090791,"remaining_time":0.003192954496},
|
100 |
+
{"learn":[4.620675835],"iteration":96,"passed_time":0.07743521929,"remaining_time":0.002394903689},
|
101 |
+
{"learn":[4.617949274],"iteration":97,"passed_time":0.07815445502,"remaining_time":0.001594988878},
|
102 |
+
{"learn":[4.611545659],"iteration":98,"passed_time":0.07892583615,"remaining_time":0.0007972306682},
|
103 |
+
{"learn":[4.59686047],"iteration":99,"passed_time":0.07972493799,"remaining_time":0}
|
104 |
]}
|
catboost_info/learn/events.out.tfevents
CHANGED
Binary files a/catboost_info/learn/events.out.tfevents and b/catboost_info/learn/events.out.tfevents differ
|
|
catboost_info/time_left.tsv
CHANGED
@@ -1,101 +1,101 @@
|
|
1 |
iter Passed Remaining
|
2 |
-
0 0
|
3 |
-
1 1
|
4 |
-
2 2
|
5 |
-
3 3
|
6 |
-
4
|
7 |
-
5
|
8 |
-
6
|
9 |
-
7
|
10 |
-
8
|
11 |
-
9
|
12 |
-
10
|
13 |
-
11
|
14 |
-
12
|
15 |
-
13
|
16 |
-
14
|
17 |
-
15
|
18 |
-
16
|
19 |
-
17
|
20 |
-
18
|
21 |
-
19
|
22 |
-
20
|
23 |
-
21
|
24 |
-
22
|
25 |
-
23
|
26 |
-
24
|
27 |
-
25
|
28 |
-
26
|
29 |
-
27
|
30 |
-
28
|
31 |
-
29
|
32 |
-
30
|
33 |
-
31
|
34 |
-
32
|
35 |
-
33
|
36 |
-
34
|
37 |
-
35
|
38 |
-
36
|
39 |
-
37
|
40 |
-
38
|
41 |
-
39
|
42 |
-
40
|
43 |
-
41 48
|
44 |
-
42
|
45 |
-
43
|
46 |
-
44
|
47 |
-
45
|
48 |
-
46
|
49 |
-
47
|
50 |
-
48
|
51 |
-
49
|
52 |
-
50
|
53 |
-
51
|
54 |
-
52
|
55 |
-
53
|
56 |
-
54
|
57 |
-
55
|
58 |
-
56
|
59 |
-
57
|
60 |
-
58
|
61 |
-
59
|
62 |
-
60
|
63 |
-
61
|
64 |
-
62
|
65 |
-
63
|
66 |
-
64
|
67 |
-
65
|
68 |
-
66
|
69 |
-
67
|
70 |
-
68
|
71 |
-
69
|
72 |
-
70
|
73 |
-
71
|
74 |
-
72
|
75 |
-
73
|
76 |
-
74
|
77 |
-
75
|
78 |
-
76
|
79 |
-
77
|
80 |
-
78
|
81 |
-
79
|
82 |
-
80
|
83 |
-
81
|
84 |
-
82
|
85 |
-
83
|
86 |
-
84
|
87 |
-
85
|
88 |
-
86
|
89 |
-
87
|
90 |
-
88
|
91 |
-
89
|
92 |
-
90
|
93 |
-
91
|
94 |
-
92
|
95 |
-
93
|
96 |
-
94
|
97 |
-
95
|
98 |
-
96
|
99 |
-
97
|
100 |
-
98
|
101 |
-
99
|
|
|
1 |
iter Passed Remaining
|
2 |
+
0 0 93
|
3 |
+
1 1 83
|
4 |
+
2 2 80
|
5 |
+
3 3 83
|
6 |
+
4 4 83
|
7 |
+
5 5 81
|
8 |
+
6 6 81
|
9 |
+
7 7 80
|
10 |
+
8 7 80
|
11 |
+
9 8 78
|
12 |
+
10 9 78
|
13 |
+
11 10 76
|
14 |
+
12 11 75
|
15 |
+
13 12 74
|
16 |
+
14 13 73
|
17 |
+
15 13 72
|
18 |
+
16 14 71
|
19 |
+
17 15 71
|
20 |
+
18 16 69
|
21 |
+
19 17 68
|
22 |
+
20 18 68
|
23 |
+
21 19 68
|
24 |
+
22 20 67
|
25 |
+
23 20 66
|
26 |
+
24 21 64
|
27 |
+
25 22 63
|
28 |
+
26 23 62
|
29 |
+
27 23 61
|
30 |
+
28 24 60
|
31 |
+
29 25 59
|
32 |
+
30 26 58
|
33 |
+
31 26 57
|
34 |
+
32 27 56
|
35 |
+
33 28 55
|
36 |
+
34 29 54
|
37 |
+
35 30 53
|
38 |
+
36 30 52
|
39 |
+
37 31 51
|
40 |
+
38 32 51
|
41 |
+
39 33 50
|
42 |
+
40 34 49
|
43 |
+
41 35 48
|
44 |
+
42 35 47
|
45 |
+
43 36 46
|
46 |
+
44 37 45
|
47 |
+
45 37 44
|
48 |
+
46 38 43
|
49 |
+
47 39 42
|
50 |
+
48 40 41
|
51 |
+
49 40 40
|
52 |
+
50 41 40
|
53 |
+
51 42 39
|
54 |
+
52 43 38
|
55 |
+
53 44 37
|
56 |
+
54 44 36
|
57 |
+
55 45 35
|
58 |
+
56 46 35
|
59 |
+
57 47 34
|
60 |
+
58 48 33
|
61 |
+
59 48 32
|
62 |
+
60 49 31
|
63 |
+
61 50 30
|
64 |
+
62 51 30
|
65 |
+
63 51 29
|
66 |
+
64 52 28
|
67 |
+
65 53 27
|
68 |
+
66 54 26
|
69 |
+
67 54 25
|
70 |
+
68 55 25
|
71 |
+
69 56 24
|
72 |
+
70 57 23
|
73 |
+
71 57 22
|
74 |
+
72 58 21
|
75 |
+
73 59 20
|
76 |
+
74 60 20
|
77 |
+
75 61 19
|
78 |
+
76 61 18
|
79 |
+
77 62 17
|
80 |
+
78 63 16
|
81 |
+
79 64 16
|
82 |
+
80 64 15
|
83 |
+
81 65 14
|
84 |
+
82 66 13
|
85 |
+
83 67 12
|
86 |
+
84 68 12
|
87 |
+
85 68 11
|
88 |
+
86 69 10
|
89 |
+
87 70 9
|
90 |
+
88 71 8
|
91 |
+
89 71 7
|
92 |
+
90 72 7
|
93 |
+
91 73 6
|
94 |
+
92 74 5
|
95 |
+
93 75 4
|
96 |
+
94 75 3
|
97 |
+
95 76 3
|
98 |
+
96 77 2
|
99 |
+
97 78 1
|
100 |
+
98 78 0
|
101 |
+
99 79 0
|
src/Components/model_tranier.py
CHANGED
@@ -26,7 +26,7 @@ from src.exception import CustomException
|
|
26 |
@dataclass
|
27 |
|
28 |
class Model_training_config:
|
29 |
-
trained_model_path = os.path.join("
|
30 |
class Model_trainer:
|
31 |
def __init__(self) -> None:
|
32 |
self.model_trainer_config = Model_training_config()
|
|
|
26 |
@dataclass
|
27 |
|
28 |
class Model_training_config:
|
29 |
+
trained_model_path = os.path.join("artifact","model.pkl")
|
30 |
class Model_trainer:
|
31 |
def __init__(self) -> None:
|
32 |
self.model_trainer_config = Model_training_config()
|
src/Pipeline/predict_pipe.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from src.utils import load_Obj
|
2 |
+
from src.utils import CustomException
|
3 |
+
|
4 |
+
import sys
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
class Predict_Pipeline():
|
10 |
+
model_path = "artifact/model.pkl"
|
11 |
+
preprocessor_path = "artifact/Preprocessor.pkl"
|
12 |
+
def __init__(self):
|
13 |
+
print("model is loading")
|
14 |
+
self.model = load_Obj(self.model_path)
|
15 |
+
self.preprocessor = load_Obj(self.preprocessor_path)
|
16 |
+
print("model is loaded")
|
17 |
+
def predict(self,
|
18 |
+
gender: str,
|
19 |
+
race_ethnicity: str,
|
20 |
+
parental_level_of_education:str,
|
21 |
+
lunch: str,
|
22 |
+
test_preparation_course: str,
|
23 |
+
reading_score: int,
|
24 |
+
writing_score: int):
|
25 |
+
print("data is loading ")
|
26 |
+
data = CustomData(
|
27 |
+
gender,
|
28 |
+
race_ethnicity,
|
29 |
+
parental_level_of_education,
|
30 |
+
lunch,
|
31 |
+
test_preparation_course,
|
32 |
+
reading_score,
|
33 |
+
writing_score).get_data_as_data_frame()
|
34 |
+
print("data is loaded")
|
35 |
+
data_scaled = self.preprocessor.transform(data)
|
36 |
+
pred = self.model.predict(data_scaled)
|
37 |
+
print("prediction done")
|
38 |
+
return pred
|
39 |
+
class CustomData:
|
40 |
+
def __init__( self,
|
41 |
+
gender: str,
|
42 |
+
race_ethnicity: str,
|
43 |
+
parental_level_of_education,
|
44 |
+
lunch: str,
|
45 |
+
test_preparation_course: str,
|
46 |
+
reading_score: int,
|
47 |
+
writing_score: int):
|
48 |
+
|
49 |
+
self.gender = gender
|
50 |
+
|
51 |
+
self.race_ethnicity = race_ethnicity
|
52 |
+
|
53 |
+
self.parental_level_of_education = parental_level_of_education
|
54 |
+
|
55 |
+
self.lunch = lunch
|
56 |
+
|
57 |
+
self.test_preparation_course = test_preparation_course
|
58 |
+
|
59 |
+
self.reading_score = reading_score
|
60 |
+
|
61 |
+
self.writing_score = writing_score
|
62 |
+
|
63 |
+
def get_data_as_data_frame(self):
|
64 |
+
try:
|
65 |
+
custom_data_input_dict = {
|
66 |
+
"gender": [self.gender],
|
67 |
+
"race_ethnicity": [self.race_ethnicity],
|
68 |
+
"parental_level_of_education": [self.parental_level_of_education],
|
69 |
+
"lunch": [self.lunch],
|
70 |
+
"test_preparation_course": [self.test_preparation_course],
|
71 |
+
"reading_score": [self.reading_score],
|
72 |
+
"writing_score": [self.writing_score],
|
73 |
+
}
|
74 |
+
|
75 |
+
return pd.DataFrame(custom_data_input_dict)
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
raise CustomException(e, sys)
|
79 |
+
|
src/utils.py
CHANGED
@@ -25,6 +25,13 @@ def save_object(file_path , obj):
|
|
25 |
pickle.dump(obj,file_obj)
|
26 |
except Exception as e:
|
27 |
raise CustomException(e,sys)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def evaluate_model(X,Y,X_test,Y_test,Models,Param):
|
30 |
try:
|
|
|
25 |
pickle.dump(obj,file_obj)
|
26 |
except Exception as e:
|
27 |
raise CustomException(e,sys)
|
28 |
+
def load_Obj(file_path):
|
29 |
+
try:
|
30 |
+
with open(file_path,"rb") as file_obj:
|
31 |
+
return dill.load(file_obj)
|
32 |
+
except Exception as e:
|
33 |
+
raise CustomException(e,sys)
|
34 |
+
|
35 |
|
36 |
def evaluate_model(X,Y,X_test,Y_test,Models,Param):
|
37 |
try:
|