Spaces:
Sleeping
Sleeping
Data transformation
Browse files- EDA.ipynb +0 -0
- artifact/Preprocessor.pkl +0 -0
- model_training.ipynb +542 -0
- requirements.txt +1 -0
- src/Components/Data_ingestation.py +4 -3
- src/Components/data_transformation.py +79 -3
- src/utils.py +23 -0
EDA.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
artifact/Preprocessor.pkl
ADDED
Binary file (3.48 kB). View file
|
|
model_training.ipynb
CHANGED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": []
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "markdown",
|
12 |
+
"metadata": {},
|
13 |
+
"source": [
|
14 |
+
"1.1 Import Data and Required Packages\n",
|
15 |
+
"Importing Pandas, Numpy, Matplotlib, Seaborn and Warings Library.\n",
|
16 |
+
"# Basic Import"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 16,
|
22 |
+
"metadata": {},
|
23 |
+
"outputs": [],
|
24 |
+
"source": [
|
25 |
+
"# Basic Import\n",
|
26 |
+
"import numpy as np\n",
|
27 |
+
"import pandas as pd\n",
|
28 |
+
"import matplotlib.pyplot as plt \n",
|
29 |
+
"import seaborn as sns\n",
|
30 |
+
"# Modelling\n",
|
31 |
+
"from sklearn.metrics import mean_squared_error, r2_score\n",
|
32 |
+
"from sklearn.neighbors import KNeighborsRegressor\n",
|
33 |
+
"from sklearn.tree import DecisionTreeRegressor\n",
|
34 |
+
"from sklearn.ensemble import RandomForestRegressor,AdaBoostRegressor\n",
|
35 |
+
"from sklearn.svm import SVR\n",
|
36 |
+
"from sklearn.linear_model import LinearRegression, Ridge,Lasso\n",
|
37 |
+
"from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error\n",
|
38 |
+
"from sklearn.model_selection import RandomizedSearchCV\n",
|
39 |
+
"from catboost import CatBoostRegressor\n",
|
40 |
+
"from xgboost import XGBRegressor\n",
|
41 |
+
"import warnings"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": 3,
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [],
|
49 |
+
"source": [
|
50 |
+
"df = pd.read_csv(\"artifact/raw.csv\")"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "code",
|
55 |
+
"execution_count": 4,
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [
|
58 |
+
{
|
59 |
+
"name": "stdout",
|
60 |
+
"output_type": "stream",
|
61 |
+
"text": [
|
62 |
+
"gender => ['female' 'male']\n",
|
63 |
+
"\n",
|
64 |
+
"race_ethnicity => ['group B' 'group C' 'group A' 'group D' 'group E']\n",
|
65 |
+
"\n",
|
66 |
+
"parental_level_of_education => [\"bachelor's degree\" 'some college' \"master's degree\" \"associate's degree\"\n",
|
67 |
+
" 'high school' 'some high school']\n",
|
68 |
+
"\n",
|
69 |
+
"lunch => ['standard' 'free/reduced']\n",
|
70 |
+
"\n",
|
71 |
+
"test_preparation_course => ['none' 'completed']\n",
|
72 |
+
"\n"
|
73 |
+
]
|
74 |
+
}
|
75 |
+
],
|
76 |
+
"source": [
|
77 |
+
"for i in df.columns:\n",
|
78 |
+
" if df[i].dtype == \"object\":\n",
|
79 |
+
" print(\"{} =>\".format(i),df[i].unique())\n",
|
80 |
+
" print(\"\")"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": 7,
|
86 |
+
"metadata": {},
|
87 |
+
"outputs": [],
|
88 |
+
"source": [
|
89 |
+
"X = df.drop(columns=['math_score'],axis=1)\n",
|
90 |
+
"y = df[\"math_score\"]"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": 8,
|
96 |
+
"metadata": {},
|
97 |
+
"outputs": [],
|
98 |
+
"source": [
|
99 |
+
"# Create Column Transformer with 3 types of transformers\n",
|
100 |
+
"num_features = X.select_dtypes(exclude=\"object\").columns\n",
|
101 |
+
"cat_features = X.select_dtypes(include=\"object\").columns\n",
|
102 |
+
"\n",
|
103 |
+
"from sklearn.preprocessing import OneHotEncoder, StandardScaler\n",
|
104 |
+
"from sklearn.compose import ColumnTransformer\n",
|
105 |
+
"\n",
|
106 |
+
"numeric_transformer = StandardScaler()\n",
|
107 |
+
"oh_transformer = OneHotEncoder()\n",
|
108 |
+
"\n",
|
109 |
+
"preprocessor = ColumnTransformer(\n",
|
110 |
+
" [\n",
|
111 |
+
" (\"OneHotEncoder\", oh_transformer, cat_features),\n",
|
112 |
+
" (\"StandardScaler\", numeric_transformer, num_features), \n",
|
113 |
+
" ]\n",
|
114 |
+
")"
|
115 |
+
]
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"cell_type": "code",
|
119 |
+
"execution_count": 9,
|
120 |
+
"metadata": {},
|
121 |
+
"outputs": [],
|
122 |
+
"source": [
|
123 |
+
"X = preprocessor.fit_transform(X)"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": 12,
|
129 |
+
"metadata": {},
|
130 |
+
"outputs": [
|
131 |
+
{
|
132 |
+
"data": {
|
133 |
+
"text/plain": [
|
134 |
+
"(1000, 19)"
|
135 |
+
]
|
136 |
+
},
|
137 |
+
"execution_count": 12,
|
138 |
+
"metadata": {},
|
139 |
+
"output_type": "execute_result"
|
140 |
+
}
|
141 |
+
],
|
142 |
+
"source": [
|
143 |
+
"X.shape"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": 13,
|
149 |
+
"metadata": {},
|
150 |
+
"outputs": [
|
151 |
+
{
|
152 |
+
"data": {
|
153 |
+
"text/plain": [
|
154 |
+
"((800, 19), (200, 19))"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
"execution_count": 13,
|
158 |
+
"metadata": {},
|
159 |
+
"output_type": "execute_result"
|
160 |
+
}
|
161 |
+
],
|
162 |
+
"source": [
|
163 |
+
"# separate dataset into train and test\n",
|
164 |
+
"from sklearn.model_selection import train_test_split\n",
|
165 |
+
"X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=42)\n",
|
166 |
+
"X_train.shape, X_test.shape"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "markdown",
|
171 |
+
"metadata": {},
|
172 |
+
"source": [
|
173 |
+
"***Create an Evaluate Function to give all metrics after model Training***"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"execution_count": 14,
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [],
|
181 |
+
"source": [
|
182 |
+
"def evaluate_model(true, predicted):\n",
|
183 |
+
" mae = mean_absolute_error(true, predicted)\n",
|
184 |
+
" mse = mean_squared_error(true, predicted)\n",
|
185 |
+
" rmse = np.sqrt(mean_squared_error(true, predicted))\n",
|
186 |
+
" r2_square = r2_score(true, predicted)\n",
|
187 |
+
" return mae, rmse, r2_square"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": 17,
|
193 |
+
"metadata": {},
|
194 |
+
"outputs": [
|
195 |
+
{
|
196 |
+
"name": "stdout",
|
197 |
+
"output_type": "stream",
|
198 |
+
"text": [
|
199 |
+
"Linear Regression\n",
|
200 |
+
"Model performance for Training set\n",
|
201 |
+
"- Root Mean Squared Error: 5.3243\n",
|
202 |
+
"- Mean Absolute Error: 4.2671\n",
|
203 |
+
"- R2 Score: 0.8743\n",
|
204 |
+
"----------------------------------\n",
|
205 |
+
"Model performance for Test set\n",
|
206 |
+
"- Root Mean Squared Error: 5.3960\n",
|
207 |
+
"- Mean Absolute Error: 4.2158\n",
|
208 |
+
"- R2 Score: 0.8803\n",
|
209 |
+
"===================================\n",
|
210 |
+
"\n",
|
211 |
+
"\n",
|
212 |
+
"Lasso\n",
|
213 |
+
"Model performance for Training set\n",
|
214 |
+
"- Root Mean Squared Error: 6.5938\n",
|
215 |
+
"- Mean Absolute Error: 5.2063\n",
|
216 |
+
"- R2 Score: 0.8071\n",
|
217 |
+
"----------------------------------\n",
|
218 |
+
"Model performance for Test set\n",
|
219 |
+
"- Root Mean Squared Error: 6.5197\n",
|
220 |
+
"- Mean Absolute Error: 5.1579\n",
|
221 |
+
"- R2 Score: 0.8253\n",
|
222 |
+
"===================================\n",
|
223 |
+
"\n",
|
224 |
+
"\n",
|
225 |
+
"Ridge\n",
|
226 |
+
"Model performance for Training set\n",
|
227 |
+
"- Root Mean Squared Error: 5.3233\n",
|
228 |
+
"- Mean Absolute Error: 4.2650\n",
|
229 |
+
"- R2 Score: 0.8743\n",
|
230 |
+
"----------------------------------\n",
|
231 |
+
"Model performance for Test set\n",
|
232 |
+
"- Root Mean Squared Error: 5.3904\n",
|
233 |
+
"- Mean Absolute Error: 4.2111\n",
|
234 |
+
"- R2 Score: 0.8806\n",
|
235 |
+
"===================================\n",
|
236 |
+
"\n",
|
237 |
+
"\n",
|
238 |
+
"K-Neighbors Regressor\n",
|
239 |
+
"Model performance for Training set\n",
|
240 |
+
"- Root Mean Squared Error: 5.7077\n",
|
241 |
+
"- Mean Absolute Error: 4.5167\n",
|
242 |
+
"- R2 Score: 0.8555\n",
|
243 |
+
"----------------------------------\n",
|
244 |
+
"Model performance for Test set\n",
|
245 |
+
"- Root Mean Squared Error: 7.2530\n",
|
246 |
+
"- Mean Absolute Error: 5.6210\n",
|
247 |
+
"- R2 Score: 0.7838\n",
|
248 |
+
"===================================\n",
|
249 |
+
"\n",
|
250 |
+
"\n",
|
251 |
+
"Decision Tree\n",
|
252 |
+
"Model performance for Training set\n",
|
253 |
+
"- Root Mean Squared Error: 0.2795\n",
|
254 |
+
"- Mean Absolute Error: 0.0187\n",
|
255 |
+
"- R2 Score: 0.9997\n",
|
256 |
+
"----------------------------------\n",
|
257 |
+
"Model performance for Test set\n",
|
258 |
+
"- Root Mean Squared Error: 7.7785\n",
|
259 |
+
"- Mean Absolute Error: 6.2350\n",
|
260 |
+
"- R2 Score: 0.7514\n",
|
261 |
+
"===================================\n",
|
262 |
+
"\n",
|
263 |
+
"\n",
|
264 |
+
"Random Forest Regressor\n",
|
265 |
+
"Model performance for Training set\n",
|
266 |
+
"- Root Mean Squared Error: 2.2860\n",
|
267 |
+
"- Mean Absolute Error: 1.8215\n",
|
268 |
+
"- R2 Score: 0.9768\n",
|
269 |
+
"----------------------------------\n",
|
270 |
+
"Model performance for Test set\n",
|
271 |
+
"- Root Mean Squared Error: 5.9993\n",
|
272 |
+
"- Mean Absolute Error: 4.6304\n",
|
273 |
+
"- R2 Score: 0.8521\n",
|
274 |
+
"===================================\n",
|
275 |
+
"\n",
|
276 |
+
"\n",
|
277 |
+
"XGBRegressor\n",
|
278 |
+
"Model performance for Training set\n",
|
279 |
+
"- Root Mean Squared Error: 1.0073\n",
|
280 |
+
"- Mean Absolute Error: 0.6875\n",
|
281 |
+
"- R2 Score: 0.9955\n",
|
282 |
+
"----------------------------------\n",
|
283 |
+
"Model performance for Test set\n",
|
284 |
+
"- Root Mean Squared Error: 6.4733\n",
|
285 |
+
"- Mean Absolute Error: 5.0577\n",
|
286 |
+
"- R2 Score: 0.8278\n",
|
287 |
+
"===================================\n",
|
288 |
+
"\n",
|
289 |
+
"\n",
|
290 |
+
"CatBoosting Regressor\n",
|
291 |
+
"Model performance for Training set\n",
|
292 |
+
"- Root Mean Squared Error: 3.0427\n",
|
293 |
+
"- Mean Absolute Error: 2.4054\n",
|
294 |
+
"- R2 Score: 0.9589\n",
|
295 |
+
"----------------------------------\n",
|
296 |
+
"Model performance for Test set\n",
|
297 |
+
"- Root Mean Squared Error: 6.0086\n",
|
298 |
+
"- Mean Absolute Error: 4.6125\n",
|
299 |
+
"- R2 Score: 0.8516\n",
|
300 |
+
"===================================\n",
|
301 |
+
"\n",
|
302 |
+
"\n",
|
303 |
+
"AdaBoost Regressor\n",
|
304 |
+
"Model performance for Training set\n",
|
305 |
+
"- Root Mean Squared Error: 5.7923\n",
|
306 |
+
"- Mean Absolute Error: 4.7185\n",
|
307 |
+
"- R2 Score: 0.8512\n",
|
308 |
+
"----------------------------------\n",
|
309 |
+
"Model performance for Test set\n",
|
310 |
+
"- Root Mean Squared Error: 5.9460\n",
|
311 |
+
"- Mean Absolute Error: 4.6538\n",
|
312 |
+
"- R2 Score: 0.8547\n",
|
313 |
+
"===================================\n",
|
314 |
+
"\n",
|
315 |
+
"\n"
|
316 |
+
]
|
317 |
+
}
|
318 |
+
],
|
319 |
+
"source": [
|
320 |
+
"models = {\n",
|
321 |
+
" \"Linear Regression\": LinearRegression(),\n",
|
322 |
+
" \"Lasso\": Lasso(),\n",
|
323 |
+
" \"Ridge\": Ridge(),\n",
|
324 |
+
" \"K-Neighbors Regressor\": KNeighborsRegressor(),\n",
|
325 |
+
" \"Decision Tree\": DecisionTreeRegressor(),\n",
|
326 |
+
" \"Random Forest Regressor\": RandomForestRegressor(),\n",
|
327 |
+
" \"XGBRegressor\": XGBRegressor(), \n",
|
328 |
+
" \"CatBoosting Regressor\": CatBoostRegressor(verbose=False),\n",
|
329 |
+
" \"AdaBoost Regressor\": AdaBoostRegressor()\n",
|
330 |
+
"}\n",
|
331 |
+
"model_list = []\n",
|
332 |
+
"r2_list =[]\n",
|
333 |
+
"\n",
|
334 |
+
"for i in range(len(list(models))):\n",
|
335 |
+
" model = list(models.values())[i]\n",
|
336 |
+
" model.fit(X_train, y_train) # Train model\n",
|
337 |
+
"\n",
|
338 |
+
" # Make predictions\n",
|
339 |
+
" y_train_pred = model.predict(X_train)\n",
|
340 |
+
" y_test_pred = model.predict(X_test)\n",
|
341 |
+
" \n",
|
342 |
+
" # Evaluate Train and Test dataset\n",
|
343 |
+
" model_train_mae , model_train_rmse, model_train_r2 = evaluate_model(y_train, y_train_pred)\n",
|
344 |
+
"\n",
|
345 |
+
" model_test_mae , model_test_rmse, model_test_r2 = evaluate_model(y_test, y_test_pred)\n",
|
346 |
+
"\n",
|
347 |
+
" \n",
|
348 |
+
" print(list(models.keys())[i])\n",
|
349 |
+
" model_list.append(list(models.keys())[i])\n",
|
350 |
+
" \n",
|
351 |
+
" print('Model performance for Training set')\n",
|
352 |
+
" print(\"- Root Mean Squared Error: {:.4f}\".format(model_train_rmse))\n",
|
353 |
+
" print(\"- Mean Absolute Error: {:.4f}\".format(model_train_mae))\n",
|
354 |
+
" print(\"- R2 Score: {:.4f}\".format(model_train_r2))\n",
|
355 |
+
"\n",
|
356 |
+
" print('----------------------------------')\n",
|
357 |
+
" \n",
|
358 |
+
" print('Model performance for Test set')\n",
|
359 |
+
" print(\"- Root Mean Squared Error: {:.4f}\".format(model_test_rmse))\n",
|
360 |
+
" print(\"- Mean Absolute Error: {:.4f}\".format(model_test_mae))\n",
|
361 |
+
" print(\"- R2 Score: {:.4f}\".format(model_test_r2))\n",
|
362 |
+
" r2_list.append(model_test_r2)\n",
|
363 |
+
" \n",
|
364 |
+
" print('='*35)\n",
|
365 |
+
" print('\\n')"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"cell_type": "markdown",
|
370 |
+
"metadata": {},
|
371 |
+
"source": [
|
372 |
+
"***Results***"
|
373 |
+
]
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"cell_type": "code",
|
377 |
+
"execution_count": 18,
|
378 |
+
"metadata": {},
|
379 |
+
"outputs": [
|
380 |
+
{
|
381 |
+
"data": {
|
382 |
+
"text/html": [
|
383 |
+
"<div>\n",
|
384 |
+
"<style scoped>\n",
|
385 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
386 |
+
" vertical-align: middle;\n",
|
387 |
+
" }\n",
|
388 |
+
"\n",
|
389 |
+
" .dataframe tbody tr th {\n",
|
390 |
+
" vertical-align: top;\n",
|
391 |
+
" }\n",
|
392 |
+
"\n",
|
393 |
+
" .dataframe thead th {\n",
|
394 |
+
" text-align: right;\n",
|
395 |
+
" }\n",
|
396 |
+
"</style>\n",
|
397 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
398 |
+
" <thead>\n",
|
399 |
+
" <tr style=\"text-align: right;\">\n",
|
400 |
+
" <th></th>\n",
|
401 |
+
" <th>Model Name</th>\n",
|
402 |
+
" <th>R2_Score</th>\n",
|
403 |
+
" </tr>\n",
|
404 |
+
" </thead>\n",
|
405 |
+
" <tbody>\n",
|
406 |
+
" <tr>\n",
|
407 |
+
" <th>2</th>\n",
|
408 |
+
" <td>Ridge</td>\n",
|
409 |
+
" <td>0.880593</td>\n",
|
410 |
+
" </tr>\n",
|
411 |
+
" <tr>\n",
|
412 |
+
" <th>0</th>\n",
|
413 |
+
" <td>Linear Regression</td>\n",
|
414 |
+
" <td>0.880345</td>\n",
|
415 |
+
" </tr>\n",
|
416 |
+
" <tr>\n",
|
417 |
+
" <th>8</th>\n",
|
418 |
+
" <td>AdaBoost Regressor</td>\n",
|
419 |
+
" <td>0.854710</td>\n",
|
420 |
+
" </tr>\n",
|
421 |
+
" <tr>\n",
|
422 |
+
" <th>5</th>\n",
|
423 |
+
" <td>Random Forest Regressor</td>\n",
|
424 |
+
" <td>0.852094</td>\n",
|
425 |
+
" </tr>\n",
|
426 |
+
" <tr>\n",
|
427 |
+
" <th>7</th>\n",
|
428 |
+
" <td>CatBoosting Regressor</td>\n",
|
429 |
+
" <td>0.851632</td>\n",
|
430 |
+
" </tr>\n",
|
431 |
+
" <tr>\n",
|
432 |
+
" <th>6</th>\n",
|
433 |
+
" <td>XGBRegressor</td>\n",
|
434 |
+
" <td>0.827797</td>\n",
|
435 |
+
" </tr>\n",
|
436 |
+
" <tr>\n",
|
437 |
+
" <th>1</th>\n",
|
438 |
+
" <td>Lasso</td>\n",
|
439 |
+
" <td>0.825320</td>\n",
|
440 |
+
" </tr>\n",
|
441 |
+
" <tr>\n",
|
442 |
+
" <th>3</th>\n",
|
443 |
+
" <td>K-Neighbors Regressor</td>\n",
|
444 |
+
" <td>0.783813</td>\n",
|
445 |
+
" </tr>\n",
|
446 |
+
" <tr>\n",
|
447 |
+
" <th>4</th>\n",
|
448 |
+
" <td>Decision Tree</td>\n",
|
449 |
+
" <td>0.751354</td>\n",
|
450 |
+
" </tr>\n",
|
451 |
+
" </tbody>\n",
|
452 |
+
"</table>\n",
|
453 |
+
"</div>"
|
454 |
+
],
|
455 |
+
"text/plain": [
|
456 |
+
" Model Name R2_Score\n",
|
457 |
+
"2 Ridge 0.880593\n",
|
458 |
+
"0 Linear Regression 0.880345\n",
|
459 |
+
"8 AdaBoost Regressor 0.854710\n",
|
460 |
+
"5 Random Forest Regressor 0.852094\n",
|
461 |
+
"7 CatBoosting Regressor 0.851632\n",
|
462 |
+
"6 XGBRegressor 0.827797\n",
|
463 |
+
"1 Lasso 0.825320\n",
|
464 |
+
"3 K-Neighbors Regressor 0.783813\n",
|
465 |
+
"4 Decision Tree 0.751354"
|
466 |
+
]
|
467 |
+
},
|
468 |
+
"execution_count": 18,
|
469 |
+
"metadata": {},
|
470 |
+
"output_type": "execute_result"
|
471 |
+
}
|
472 |
+
],
|
473 |
+
"source": [
|
474 |
+
"pd.DataFrame(list(zip(model_list, r2_list)), columns=['Model Name', 'R2_Score']).sort_values(by=[\"R2_Score\"],ascending=False)\n"
|
475 |
+
]
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"cell_type": "code",
|
479 |
+
"execution_count": null,
|
480 |
+
"metadata": {},
|
481 |
+
"outputs": [],
|
482 |
+
"source": []
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"cell_type": "code",
|
486 |
+
"execution_count": null,
|
487 |
+
"metadata": {},
|
488 |
+
"outputs": [],
|
489 |
+
"source": []
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"cell_type": "code",
|
493 |
+
"execution_count": null,
|
494 |
+
"metadata": {},
|
495 |
+
"outputs": [],
|
496 |
+
"source": []
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"cell_type": "code",
|
500 |
+
"execution_count": null,
|
501 |
+
"metadata": {},
|
502 |
+
"outputs": [],
|
503 |
+
"source": []
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"cell_type": "code",
|
507 |
+
"execution_count": null,
|
508 |
+
"metadata": {},
|
509 |
+
"outputs": [],
|
510 |
+
"source": []
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"cell_type": "code",
|
514 |
+
"execution_count": null,
|
515 |
+
"metadata": {},
|
516 |
+
"outputs": [],
|
517 |
+
"source": []
|
518 |
+
}
|
519 |
+
],
|
520 |
+
"metadata": {
|
521 |
+
"kernelspec": {
|
522 |
+
"display_name": "ml-project",
|
523 |
+
"language": "python",
|
524 |
+
"name": "python3"
|
525 |
+
},
|
526 |
+
"language_info": {
|
527 |
+
"codemirror_mode": {
|
528 |
+
"name": "ipython",
|
529 |
+
"version": 3
|
530 |
+
},
|
531 |
+
"file_extension": ".py",
|
532 |
+
"mimetype": "text/x-python",
|
533 |
+
"name": "python",
|
534 |
+
"nbconvert_exporter": "python",
|
535 |
+
"pygments_lexer": "ipython3",
|
536 |
+
"version": "3.11.4"
|
537 |
+
},
|
538 |
+
"orig_nbformat": 4
|
539 |
+
},
|
540 |
+
"nbformat": 4,
|
541 |
+
"nbformat_minor": 2
|
542 |
+
}
|
requirements.txt
CHANGED
@@ -5,4 +5,5 @@ matplotlib
|
|
5 |
scikit-learn
|
6 |
catboost
|
7 |
xgboost
|
|
|
8 |
-e .
|
|
|
5 |
scikit-learn
|
6 |
catboost
|
7 |
xgboost
|
8 |
+
dill
|
9 |
-e .
|
src/Components/Data_ingestation.py
CHANGED
@@ -6,8 +6,7 @@ from src.logger import logging
|
|
6 |
import pandas as pd
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from dataclasses import dataclass
|
9 |
-
|
10 |
-
|
11 |
@dataclass
|
12 |
class Data_ingestion_config:
|
13 |
train_data_path: str = os.path.join("artifact","train.csv")
|
@@ -46,8 +45,10 @@ class Data_ingestion:
|
|
46 |
|
47 |
if __name__ == "__main__":
|
48 |
obj = Data_ingestion()
|
49 |
-
obj.intiate_data_ingestion()
|
50 |
|
|
|
|
|
51 |
|
52 |
|
53 |
|
|
|
6 |
import pandas as pd
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from dataclasses import dataclass
|
9 |
+
from data_transformation import Data_transformation
|
|
|
10 |
@dataclass
|
11 |
class Data_ingestion_config:
|
12 |
train_data_path: str = os.path.join("artifact","train.csv")
|
|
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
obj = Data_ingestion()
|
48 |
+
train_data,test_data = obj.intiate_data_ingestion()
|
49 |
|
50 |
+
data_trans = Data_transformation()
|
51 |
+
data_trans.initiate_data_transformation(train_data,test_data)
|
52 |
|
53 |
|
54 |
|
src/Components/data_transformation.py
CHANGED
@@ -11,21 +11,97 @@ from sklearn.preprocessing import OneHotEncoder,StandardScaler
|
|
11 |
from src.exception import CustomException
|
12 |
from src.logger import logging
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
@dataclass
|
17 |
|
18 |
class Data_transformation_config:
|
19 |
-
|
20 |
|
21 |
class Data_transformation:
|
22 |
def __init__(self) -> None:
|
23 |
self.data_transformation_config = Data_transformation_config()
|
24 |
def get_data_transformer_object(self):
|
25 |
try:
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
except Exception as e:
|
28 |
raise CustomException(e,sys)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
11 |
from src.exception import CustomException
|
12 |
from src.logger import logging
|
13 |
|
14 |
+
|
15 |
+
from src.utils import save_object
|
16 |
|
17 |
@dataclass
|
18 |
|
19 |
class Data_transformation_config:
|
20 |
+
Preprocessor_obj_file = os.path.join("artifact","Preprocessor.pkl")
|
21 |
|
22 |
class Data_transformation:
|
23 |
def __init__(self) -> None:
|
24 |
self.data_transformation_config = Data_transformation_config()
|
25 |
def get_data_transformer_object(self):
|
26 |
try:
|
27 |
+
numerical_columns = ["writing_score","reading_score"]
|
28 |
+
categorical_columns = [
|
29 |
+
"gender",
|
30 |
+
"race_ethnicity",
|
31 |
+
"parental_level_of_education",
|
32 |
+
"lunch",
|
33 |
+
"test_preparation_course",
|
34 |
+
]
|
35 |
+
|
36 |
+
num_pipeline = Pipeline(
|
37 |
+
steps = [
|
38 |
+
("imputer",SimpleImputer(strategy="median")),
|
39 |
+
("scaler",StandardScaler())
|
40 |
+
]
|
41 |
+
)
|
42 |
+
cat_pipeline = Pipeline(
|
43 |
+
steps = [
|
44 |
+
("imputer",SimpleImputer(strategy= "most_frequent")),
|
45 |
+
("one_hot_encoder",OneHotEncoder()),
|
46 |
+
("scaler",StandardScaler(with_mean = False))
|
47 |
+
|
48 |
+
]
|
49 |
+
)
|
50 |
+
logging.info(f"Categorical Columns:{categorical_columns}")
|
51 |
+
logging.info(f"Numerical Columns:{numerical_columns}")
|
52 |
+
|
53 |
+
preprocessor = ColumnTransformer(
|
54 |
+
[
|
55 |
+
("num_pipeline",num_pipeline,numerical_columns),
|
56 |
+
("cat_pipeline",cat_pipeline,categorical_columns)
|
57 |
+
]
|
58 |
+
)
|
59 |
+
return preprocessor
|
60 |
except Exception as e:
|
61 |
raise CustomException(e,sys)
|
62 |
+
|
63 |
+
|
64 |
+
def initiate_data_transformation(self,train_path,test_path):
|
65 |
+
|
66 |
+
try:
|
67 |
+
train_df = pd.read_csv(train_path)
|
68 |
+
test_df = pd.read_csv(test_path)
|
69 |
+
|
70 |
+
logging.info("Read train and test data completed")
|
71 |
+
logging.info("Obtaining preprocessing object")
|
72 |
+
|
73 |
+
preprocessor_obj = self.get_data_transformer_object()
|
74 |
|
75 |
+
target_column_name = "math_score"
|
76 |
+
numerical_columns = ["writing_score","reading_score"]
|
77 |
|
78 |
+
input_feature_train_df = train_df.drop(columns = [target_column_name],axis = 1)
|
79 |
+
target_feature_train_df = train_df[target_column_name]
|
80 |
+
|
81 |
+
input_feature_test_df = test_df.drop(columns = [target_column_name],axis = 1)
|
82 |
+
target_feature_test_df = test_df[target_column_name]
|
83 |
+
|
84 |
+
logging.info(
|
85 |
+
f"Applying preprocessing object on training dataframe and testing dataframe.")
|
86 |
+
|
87 |
+
input_feature_train_arr = preprocessor_obj.fit_transform(input_feature_train_df)
|
88 |
+
input_feature_test_arr = preprocessor_obj.transform(input_feature_test_df)
|
89 |
+
|
90 |
+
train_arr = np.c_[input_feature_train_arr,np.array(target_feature_train_df)]
|
91 |
+
test_arr = np.c_[input_feature_test_arr,np.array(target_feature_test_df)]
|
92 |
+
|
93 |
+
logging.info(f"Saved preprocessing object.")
|
94 |
+
|
95 |
+
save_object(
|
96 |
+
file_path = self.data_transformation_config.Preprocessor_obj_file,
|
97 |
+
obj = preprocessor_obj
|
98 |
+
)
|
99 |
+
|
100 |
+
return (
|
101 |
+
train_arr,
|
102 |
+
test_arr,
|
103 |
+
self.data_transformation_config.Preprocessor_obj_file
|
104 |
+
)
|
105 |
+
except Exception as e:
|
106 |
+
raise CustomException(e,sys)
|
107 |
|
src/utils.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import dill
|
7 |
+
import pickle
|
8 |
+
from sklearn.metrics import r2_score
|
9 |
+
from sklearn.model_selection import GridSearchCV
|
10 |
+
|
11 |
+
from src.exception import CustomException
|
12 |
+
|
13 |
+
def save_object(file_path , obj):
|
14 |
+
try:
|
15 |
+
dir_path = os.path.dirname(file_path)
|
16 |
+
|
17 |
+
os.makedirs(dir_path,exist_ok= True)
|
18 |
+
|
19 |
+
with open(file_path,"wb") as file_obj:
|
20 |
+
pickle.dump(obj,file_obj)
|
21 |
+
except Exception as e:
|
22 |
+
raise CustomException(e,sys)
|
23 |
+
|