File size: 41,088 Bytes
e427008
 
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
43dd1e4
 
a77a138
6ff5af2
 
a77a138
 
 
 
 
e427008
43dd1e4
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43dd1e4
 
 
 
 
 
a77a138
 
 
 
 
 
43dd1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a77a138
 
43dd1e4
a77a138
43dd1e4
 
 
 
 
 
a77a138
 
43dd1e4
a77a138
43dd1e4
 
 
a77a138
 
 
 
 
 
 
 
 
 
 
 
43dd1e4
 
 
a77a138
 
43dd1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a77a138
 
 
43dd1e4
 
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e427008
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e427008
a77a138
 
 
e427008
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e427008
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43dd1e4
 
a77a138
 
 
 
43dd1e4
 
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e427008
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d282c0
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43dd1e4
 
a77a138
 
43dd1e4
 
a77a138
 
43dd1e4
 
 
 
a77a138
 
 
43dd1e4
 
 
 
 
 
 
 
 
 
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43dd1e4
 
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2834bee
43dd1e4
 
2834bee
a77a138
0d282c0
a77a138
 
43dd1e4
a77a138
 
e427008
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e427008
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43dd1e4
 
a77a138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e427008
a77a138
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
import gradio as gr
import pandas as pd
import numpy as np
import os
import re
from datetime import datetime
import json
import torch
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from huggingface_hub import HfApi
import shutil
import tempfile
from sklearn.metrics import cohen_kappa_score
import krippendorff

# from stark_qa import load_qa
# from stark_qa.evaluator import Evaluator

from utils.hub_storage import HubStorage
from utils.token_handler import TokenHandler

# Initialize storage once at startup
try:
    REPO_ID = "rahmanidashti/llm-as-a-rel"  # Replace with your space name
    hub_storage = HubStorage(REPO_ID)
except Exception as e:
    raise RuntimeError(f"Failed to initialize HuggingFace Hub storage: {e}")


def process_single_instance(args):
    idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
    query, query_id, answer_ids, meta_info = qa_dataset[idx]

    try:
        pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item()
    except IndexError:
        raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.')
    except Exception as e:
        raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}')

    if isinstance(pred_rank, str):
        try:
            pred_rank = eval(pred_rank)
        except SyntaxError as e:
            raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}')
    
    if not isinstance(pred_rank, list):
        raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.')

    pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
    answer_ids = torch.LongTensor(answer_ids)
    result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)

    result["idx"], result["query_id"] = idx, query_id
    return result

def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4):
    """
    computing the metrics for the evaluation.

    Parameters:
    csv_path (str): The path to the submission file for evaluation.
    """
    candidate_ids_dict = {
        'amazon': [i for i in range(957192)],
        'mag': [i for i in range(1172724, 1872968)],
        'prime': [i for i in range(129375)]
    }
    try:
        # eval_csv = pd.read_csv(csv_path)
        eval_csv = pd.read_csv(csv_path, sep=" ", header=None, names=['qid', 'Q0', 'docid', 'score'])
        eval_csv['score'] = [0 if x < 0 else 3 if x > 3 else x for x in eval_csv['score']]
        test_eval_df = pd.merge(test_data, eval_csv, on=['qid', 'docid'], how='outer')
        cohen_kappa = cohen_kappa_score(test_eval_df['score_x'], test_eval_df['score_y'])
        krippendorff_alpha = krippendorff.alpha(reliability_data=[test_eval_df['score_x'], test_eval_df['score_y']], value_domain=[0,1,2,3], level_of_measurement='ordinal')

        # if 'query_id' not in eval_csv.columns:
            # raise ValueError('No `query_id` column found in the submitted csv.')
        # if 'pred_rank' not in eval_csv.columns:
            # raise ValueError('No `pred_rank` column found in the submitted csv.')

        # eval_csv = eval_csv[['query_id', 'pred_rank']]

        # if dataset not in candidate_ids_dict:
        #     raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.")
        # if split not in ['test', 'test-0.1', 'human_generated_eval']:
        #     raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")

        # evaluator = Evaluator(candidate_ids_dict[dataset])
        # eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
        # qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
        # split_idx = qa_dataset.get_idx_split()
        # all_indices = split_idx[split].tolist()

        # results_list = []
        # query_ids = []

        # Prepare args for each worker
        # args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices]

        # with ProcessPoolExecutor(max_workers=num_workers) as executor:
        #     futures = [executor.submit(process_single_instance, arg) for arg in args]
        #     for future in tqdm(as_completed(futures), total=len(futures)):
        #         result = future.result()  # This will raise an error if the worker encountered one
        #         results_list.append(result)
        #         query_ids.append(result['query_id'])

        # Concatenate results and compute final metrics
        # eval_csv = pd.concat([eval_csv, pd.DataFrame(results_list)], ignore_index=True)
        final_results = {
            # metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics
            'kappa': round(cohen_kappa, 4),
            'alpha': round(krippendorff_alpha, 4) 
        }
        return final_results

    except pd.errors.EmptyDataError:
        return "Error: The CSV file is empty or could not be read. Please check the file and try again."
    except FileNotFoundError:
        return f"Error: The file {csv_path} could not be found. Please check the file path and try again."
    except Exception as error:
        return f"{error}"

# Data dictionaries for leaderboard
data_synthesized_full = {
    'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)'],
    'LLMJudge-DL2023_Kappa': [44.94, 15.29, 30.96],
    'LLMJudge-DL2023_Alpha': [67.42, 47.93, 51.06],
}

# data_synthesized_full = {
#     'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
#     'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
#     'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
#     'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
#     'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
#     'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
#     'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
#     'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
#     'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
#     'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
#     'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
#     'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
#     'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
# }

# data_synthesized_10 = {
#     'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
#     'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
#     'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
#     'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
#     'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
#     'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
#     'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
#     'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
#     'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
#     'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
#     'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
#     'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
#     'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
# }

# data_human_generated = {
#     'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
#     'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
#     'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
#     'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
#     'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
#     'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
#     'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
#     'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
#     'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
#     'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
#     'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
#     'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
#     'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
# }

# Initialize DataFrames
df_synthesized_full = pd.DataFrame(data_synthesized_full)
# df_synthesized_10 = pd.DataFrame(data_synthesized_10)
# df_human_generated = pd.DataFrame(data_human_generated)

# Model type definitions
model_types = {
    'Sparse Retriever': ['BM25'],
    'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
    'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
    'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
    'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker'],
    'Others': []  # Will be populated dynamically with submitted models
}

# Submission form validation functions
def validate_email(email_str):
    """Validate email format(s)"""
    emails = [e.strip() for e in email_str.split(';')]
    email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')
    return all(email_pattern.match(email) for email in emails)

def validate_github_url(url):
    """Validate GitHub URL format"""
    github_pattern = re.compile(
        r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$'
    )
    return bool(github_pattern.match(url))

def validate_csv(file_obj):
    """Validate CSV file format and content"""
    try:
        df = pd.read_csv(file_obj.name)
        required_cols = ['query_id', 'pred_rank']
        
        if not all(col in df.columns for col in required_cols):
            return False, "CSV must contain 'query_id' and 'pred_rank' columns"
            
        try:
            first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0]
            if not isinstance(first_rank, list) or len(first_rank) < 20:
                return False, "pred_rank must be a list with at least 20 candidates"
        except:
            return False, "Invalid pred_rank format"
            
        return True, "Valid CSV file"
    except Exception as e:
        return False, f"Error processing CSV: {str(e)}"

def sanitize_name(name):
    """Sanitize name for file system use"""
    return re.sub(r'[^a-zA-Z0-9]', '_', name)

def read_json_from_hub(api: HfApi, repo_id: str, file_path: str) -> dict:
    """
    Read and parse JSON file from HuggingFace Hub.
    
    Args:
        api: HuggingFace API instance
        repo_id: Repository ID
        file_path: Path to file in repository
    
    Returns:
        dict: Parsed JSON content
    """
    try:
        # Download the file content as bytes
        content = api.hf_hub_download(
            repo_id=repo_id,
            filename=file_path,
            repo_type="space"
        )
        
        # Read and parse JSON
        with open(content, 'r') as f:
            return json.load(f)
    except Exception as e:
        print(f"Error reading JSON file {file_path}: {str(e)}")
        return None

def scan_submissions_directory():
    """
    Scans the submissions directory and updates the model types dictionary
    with submitted models.
    """
    try:
        # Initialize HuggingFace API
        api = HfApi()
        
        # Track submissions for each split
        submissions_by_split = {
            'test': [],
            'test-0.1': [],
            'human_generated_eval': []
        }
        
        # Get all files from repository
        try:
            all_files = api.list_repo_files(
                repo_id=REPO_ID,
                repo_type="space"
            )
            # Filter for files in submissions directory
            repo_files = [f for f in all_files if f.startswith('submissions/')]
        except Exception as e:
            print(f"Error listing repository contents: {str(e)}")
            return submissions_by_split
            
        # Group files by team folders
        folder_files = {}
        for filepath in repo_files:
            parts = filepath.split('/')
            if len(parts) < 3:  # Need at least submissions/team_folder/file
                continue
                
            folder_name = parts[1]  # team_folder name
            if folder_name not in folder_files:
                folder_files[folder_name] = []
            folder_files[folder_name].append(filepath)
        
        # Process each team folder
        for folder_name, files in folder_files.items():
            try:
                # Find latest.json in this folder
                latest_file = next((f for f in files if f.endswith('latest.json')), None)
                if not latest_file:
                    print(f"No latest.json found in {folder_name}")
                    continue
                
                # Read latest.json
                latest_info = read_json_from_hub(api, REPO_ID, latest_file)
                if not latest_info:
                    print(f"Failed to read latest.json for {folder_name}")
                    continue
                
                timestamp = latest_info.get('latest_submission')
                if not timestamp:
                    print(f"No timestamp found in latest.json for {folder_name}")
                    continue
                
                # Find metadata file for latest submission
                metadata_file = next(
                    (f for f in files if f.endswith(f'metadata_{timestamp}.json')), 
                    None
                )
                if not metadata_file:
                    print(f"No matching metadata file found for {folder_name} timestamp {timestamp}")
                    continue
                
                # Read metadata file
                submission_data = read_json_from_hub(api, REPO_ID, metadata_file)
                if not submission_data:
                    print(f"Failed to read metadata for {folder_name}")
                    continue
                
                if latest_info.get('status') != 'approved':
                    print(f"Skipping unapproved submission in {folder_name}")
                    continue
                
                # Add to submissions by split
                split = submission_data.get('Split')
                if split in submissions_by_split:
                    submissions_by_split[split].append(submission_data)
                    
                    # Update model types if necessary
                    method_name = submission_data.get('Method Name')
                    model_type = submission_data.get('Model Type', 'Others')
                    
                    # Add to model type if it's a new method
                    method_exists = any(method_name in methods for methods in model_types.values())
                    if not method_exists and model_type in model_types:
                        model_types[model_type].append(method_name)
                
            except Exception as e:
                print(f"Error processing folder {folder_name}: {str(e)}")
                continue
                
        return submissions_by_split
        
    except Exception as e:
        print(f"Error scanning submissions directory: {str(e)}")
        return None

def initialize_leaderboard():
    """
    Initialize the leaderboard with baseline results and submitted results.
    """
    # global df_synthesized_full, df_synthesized_10, df_human_generated
    global df_synthesized_full
    
    try:
        # First, initialize with baseline results
        df_synthesized_full = pd.DataFrame(data_synthesized_full)
        # df_synthesized_10 = pd.DataFrame(data_synthesized_10)
        # df_human_generated = pd.DataFrame(data_human_generated)
        
        print("Initialized with baseline results")
        
        # Then scan and add submitted results
        submissions = scan_submissions_directory()
        if submissions:
            for split, split_submissions in submissions.items():
                for submission in split_submissions:
                    if submission.get('results'):  # Make sure we have results
                        # Update appropriate DataFrame based on split
                        if split == 'test':
                            df_to_update = df_synthesized_full
                        elif split == 'test-0.1':
                            df_to_update = df_synthesized_10
                        else:  # human_generated_eval
                            df_to_update = df_human_generated
                            
                        # Prepare new row data
                        new_row = {
                            'Method': submission['Method Name'],
                            f'STARK-{submission["Dataset"].upper()}_Hit@1': submission['results']['hit@1'],
                            f'STARK-{submission["Dataset"].upper()}_Hit@5': submission['results']['hit@5'],
                            f'STARK-{submission["Dataset"].upper()}_R@20': submission['results']['recall@20'],
                            f'STARK-{submission["Dataset"].upper()}_MRR': submission['results']['mrr']
                        }
                        
                        # Update existing row or add new one
                        method_mask = df_to_update['Method'] == submission['Method Name']
                        if method_mask.any():
                            for col in new_row:
                                df_to_update.loc[method_mask, col] = new_row[col]
                        else:
                            df_to_update.loc[len(df_to_update)] = new_row
        
        print("Leaderboard initialization complete")
        
    except Exception as e:
        print(f"Error initializing leaderboard: {str(e)}")

def get_file_content(file_path):
    """
    Helper function to safely read file content from HuggingFace repository
    """
    try:
        api = HfApi()
        content_path = api.hf_hub_download(
            repo_id=REPO_ID,
            filename=file_path,
            repo_type="space"
        )
        with open(content_path, 'r') as f:
            return f.read()
    except Exception as e:
        print(f"Error reading file {file_path}: {str(e)}")
        return None

def save_submission(submission_data, csv_file):
    """
    Save submission data and CSV file using model_name_team_name format
    
    Args:
        submission_data (dict): Metadata and results for the submission
        csv_file: The uploaded CSV file object
    """
    # Create folder name from model name and team name
    model_name_clean = sanitize_name(submission_data['Method Name'])
    team_name_clean = sanitize_name(submission_data['Team Name'])
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    
    # Create folder name: model_name_team_name
    folder_name = f"{model_name_clean}_{team_name_clean}"
    submission_id = f"{folder_name}_{timestamp}"
    
    # Create submission directory structure
    base_dir = "submissions"
    submission_dir = os.path.join(base_dir, folder_name)
    os.makedirs(submission_dir, exist_ok=True)
    
    # Save CSV file with timestamp to allow multiple submissions
    csv_filename = f"predictions_{timestamp}.csv"
    csv_path = os.path.join(submission_dir, csv_filename)
    if hasattr(csv_file, 'name'):
        with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target:
            target.write(source.read())
    
    # Add file paths to submission data
    submission_data.update({
        "csv_path": csv_path,
        "submission_id": submission_id,
        "folder_name": folder_name
    })
    
    # Save metadata as JSON with timestamp
    metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json")
    with open(metadata_path, 'w') as f:
        json.dump(submission_data, f, indent=4)
    
    # Update latest.json to track most recent submission
    latest_path = os.path.join(submission_dir, "latest.json")
    with open(latest_path, 'w') as f:
        json.dump({
            "latest_submission": timestamp,
            "status": "pending_review",
            "method_name": submission_data['Method Name']
        }, f, indent=4)
    
    return submission_id

def update_leaderboard_data(submission_data):
    """
    Update leaderboard data with new submission results
    Only uses model name in the displayed table
    """
    global df_synthesized_full, df_synthesized_10, df_human_generated
    
    # Determine which DataFrame to update based on split
    split_to_df = {
        'test': df_synthesized_full,
        'test-0.1': df_synthesized_10,
        'human_generated_eval': df_human_generated
    }
    
    df_to_update = split_to_df[submission_data['Split']]
    
    # Prepare new row data
    new_row = {
        'Method': submission_data['Method Name'],  # Only use method name in table
        f'STARK-{submission_data["Dataset"].upper()}_Hit@1': submission_data['results']['hit@1'],
        f'STARK-{submission_data["Dataset"].upper()}_Hit@5': submission_data['results']['hit@5'],
        f'STARK-{submission_data["Dataset"].upper()}_R@20': submission_data['results']['recall@20'],
        f'STARK-{submission_data["Dataset"].upper()}_MRR': submission_data['results']['mrr']
    }
    
    # Check if method already exists
    method_mask = df_to_update['Method'] == submission_data['Method Name']
    if method_mask.any():
        # Update existing row
        for col in new_row:
            df_to_update.loc[method_mask, col] = new_row[col]
    else:
        # Add new row
        df_to_update.loc[len(df_to_update)] = new_row

# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
    """
    Extracts emails from the meta_data dictionary.
    
    Args:
        meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
    
    Returns:
        list: A list of email addresses.
    """
    return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]

# Function to format meta_data as an HTML table (without Prediction CSV)
def format_metadata_as_table(meta_data):
    """
    Formats metadata dictionary into an HTML table for the email.
    Handles multiple contact emails separated by a semicolon.

    Args:
        meta_data (dict): Dictionary containing submission metadata.

    Returns:
        str: HTML string representing the metadata table.
    """
    table_rows = ""
    
    for key, value in meta_data.items():
        if key == "Contact Email(s)":
            # Ensure that contact emails are split by semicolon
            emails = value.split(';')
            formatted_emails = "; ".join([email.strip() for email in emails])
            table_rows += f"<tr><td><b>{key}</b></td><td>{formatted_emails}</td></tr>"
        elif key != "Prediction CSV":  # Exclude the Prediction CSV field
            table_rows += f"<tr><td><b>{key}</b></td><td>{value}</td></tr>"

    table_html = f"""
    <table border="1" cellpadding="5" cellspacing="0">
        {table_rows}
    </table>
    """
    return table_html

# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
    """
    Extracts emails from the meta_data dictionary.
    
    Args:
        meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
    
    Returns:
        list: A list of email addresses.
    """
    return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]
            
def format_evaluation_results(results):
    """
    Formats the evaluation results dictionary into a readable string.

    Args:
        results (dict): Dictionary containing evaluation metrics and their values.

    Returns:
        str: Formatted string of evaluation results.
    """
    result_lines = [f"{metric}: {value}" for metric, value in results.items()]
    return "\n".join(result_lines)

def get_model_type_for_method(method_name):
    """
    Find the model type category for a given method name.
    Returns 'Others' if not found in predefined categories.
    """
    for type_name, methods in model_types.items():
        if method_name in methods:
            return type_name
    return 'Others'

def validate_model_type(method_name, selected_type):
    """
    Validate if the selected model type is appropriate for the method name.
    Returns (is_valid, message).
    """
    # Check if method exists in any category
    existing_type = None
    for type_name, methods in model_types.items():
        if method_name in methods:
            existing_type = type_name
            break
    
    # If method exists, it must be submitted under its predefined category
    if existing_type:
        if existing_type != selected_type:
            return False, f"This method name is already registered under '{existing_type}'. Please use the correct category."
        return True, "Valid model type"
    
    # For new methods, any category is valid
    return True, "Valid model type"

def process_submission(method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_description, hardware, paper_link, model_type):
    """Process and validate submission"""
    temp_files = []
    try:
        # Input validation
        if not all([method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_type]):
            return "Error: Please fill in all required fields"
        
        # Validate model type
        is_valid, message = validate_model_type(method_name, model_type)
        if not is_valid:
            return f"Error: {message}"

        # Create metadata
        meta_data = {
            "Method Name": method_name,
            "Team Name": team_name,
            "Dataset": dataset,
            "Split": split,
            "Contact Email(s)": contact_email,
            "Code Repository": code_repo,
            "Model Description": model_description,
            "Hardware": hardware,
            "(Optional) Paper link": paper_link,
            "Model Type": model_type
        }
        
        # Generate folder name and timestamp
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        folder_name = f"{sanitize_name(method_name)}_{sanitize_name(team_name)}"
        
        # Process CSV file
        temp_csv_path = None
        if isinstance(csv_file, str):
            temp_csv_path = csv_file
        else:
            temp_fd, temp_csv_path = tempfile.mkstemp(suffix='.csv')
            temp_files.append(temp_csv_path)
            os.close(temp_fd)
            
            if hasattr(csv_file, 'name'):
                shutil.copy2(csv_file.name, temp_csv_path)
            else:
                with open(temp_csv_path, 'wb') as temp_file:
                    if hasattr(csv_file, 'seek'):
                        csv_file.seek(0)
                    if hasattr(csv_file, 'read'):
                        shutil.copyfileobj(csv_file, temp_file)
                    else:
                        temp_file.write(csv_file)

        if not os.path.exists(temp_csv_path):
            raise FileNotFoundError(f"Failed to create temporary CSV file at {temp_csv_path}")

        # Compute metrics
        results = compute_metrics(
            csv_path=temp_csv_path,
            dataset=dataset.lower(),
            split=split,
            num_workers=4
        )
        
        if isinstance(results, str):
            # send_error_notification(meta_data, results)
            return f"Evaluation error: {results}"

        # Process results
        processed_results = {
            "hit@1": round(results['hit@1'] * 100, 2),
            "hit@5": round(results['hit@5'] * 100, 2),
            "recall@20": round(results['recall@20'] * 100, 2),
            "mrr": round(results['mrr'] * 100, 2)
        }
        
        # Save files to HuggingFace Hub
        try:
            # 1. Save CSV file
            csv_filename = f"predictions_{timestamp}.csv"
            csv_path_in_repo = f"submissions/{folder_name}/{csv_filename}"
            hub_storage.save_to_hub(
                file_content=temp_csv_path,
                path_in_repo=csv_path_in_repo,
                commit_message=f"Add submission: {method_name} by {team_name}"
            )

            # 2. Save metadata
            submission_data = {
                **meta_data,
                "results": processed_results,
                "status": "approved",  # or "pending_review"
                "submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                "csv_path": csv_path_in_repo
            }
            
            metadata_fd, temp_metadata_path = tempfile.mkstemp(suffix='.json')
            temp_files.append(temp_metadata_path)
            os.close(metadata_fd)
            
            with open(temp_metadata_path, 'w') as f:
                json.dump(submission_data, f, indent=4)
            
            metadata_path = f"submissions/{folder_name}/metadata_{timestamp}.json"
            hub_storage.save_to_hub(
                file_content=temp_metadata_path,
                path_in_repo=metadata_path,
                commit_message=f"Add metadata: {method_name} by {team_name}"
            )

            # 3. Create or update latest.json
            latest_info = {
                "latest_submission": timestamp,
                "status": "approved",  # or "pending_review"
                "method_name": method_name,
                "team_name": team_name
            }
            
            latest_fd, temp_latest_path = tempfile.mkstemp(suffix='.json')
            temp_files.append(temp_latest_path)
            os.close(latest_fd)
            
            with open(temp_latest_path, 'w') as f:
                json.dump(latest_info, f, indent=4)
            
            latest_path = f"submissions/{folder_name}/latest.json"
            hub_storage.save_to_hub(
                file_content=temp_latest_path,
                path_in_repo=latest_path,
                commit_message=f"Update latest submission info for {method_name}"
            )

        except Exception as e:
            raise RuntimeError(f"Failed to save files to HuggingFace Hub: {str(e)}")
        
        # Send confirmation email and update leaderboard data
        # send_submission_confirmation(meta_data, processed_results)
        update_leaderboard_data(submission_data)
        
        # Return success message
        return f"""
        Submission successful! 
        
        Evaluation Results:
        Hit@1: {processed_results['hit@1']:.2f}%
        Hit@5: {processed_results['hit@5']:.2f}%
        Recall@20: {processed_results['recall@20']:.2f}%
        MRR: {processed_results['mrr']:.2f}%
        
        Your submission has been saved and a confirmation email has been sent to {contact_email}.
        Once approved, your results will appear in the leaderboard under: {method_name}
        
        You can find your submission at:
        https://huggingface.co/spaces/{REPO_ID}/tree/main/submissions/{folder_name}
        
        Please refresh the page to see your submission in the leaderboard.
        """
        
    except Exception as e:
        error_message = f"Error processing submission: {str(e)}"
        # send_error_notification(meta_data, error_message)
        return error_message
    finally:
        # Clean up temporary files
        for temp_file in temp_files:
            try:
                if os.path.exists(temp_file):
                    os.unlink(temp_file)
            except Exception as e:
                print(f"Warning: Failed to delete temporary file {temp_file}: {str(e)}")

def filter_by_model_type(df, selected_types):
    """
    Filter DataFrame by selected model types, including submitted models.
    """
    if not selected_types:
        return df.head(0)
        
    # Get all models from selected types
    selected_models = []
    for type_name in selected_types:
        selected_models.extend(model_types[type_name])
    
    # Filter DataFrame to include only selected models
    return df[df['Method'].isin(selected_models)]

def format_dataframe(df, dataset):
    columns = ['Method'] + [col for col in df.columns if dataset in col]
    filtered_df = df[columns].copy()
    filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
    filtered_df = filtered_df.sort_values('MRR', ascending=False)
    return filtered_df

def update_tables(selected_types):
    """
    Update tables based on selected model types.
    Include all models from selected categories.
    """
    if not selected_types:
        # return [df.head(0) for df in [df_synthesized_full, df_synthesized_10, df_human_generated]]
        return [df.head(0) for df in [df_synthesized_full]]
    
    filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types)
    # filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types)
    # filtered_df_human = filter_by_model_type(df_human_generated, selected_types)
    
    outputs = []
    # for df in [filtered_df_full, filtered_df_10, filtered_df_human]:
    for df in [filtered_df_full]:
        for dataset in ['DL2023', 'MAG', 'PRIME']:
            outputs.append(format_dataframe(df, f"LLMJudge-{dataset}"))
    
    return outputs

def load_test_data():
    # Split the text into a list
    test_data = os.getenv('LLMJudgeTest').split()
    # Reshape the list into a 2D array where each row contains 4 elements
    test_data = [test_data[i:i+4] for i in range(0, len(test_data), 4)]
    # Create a DataFrame
    test_data = pd.DataFrame(test_data, columns=['qid', 'Q0', 'pid', 'score'])
    
    return test_data

css = """
table > thead {
    white-space: normal
}

table {
    --cell-width-1: 250px
}

table > tbody > tr > td:nth-child(2) > div {
    overflow-x: auto
}

.tab-nav {
    border-bottom: 1px solid rgba(255, 255, 255, 0.1);
    margin-bottom: 1rem;
}
"""

# Main application
with gr.Blocks(css=css) as demo:
    gr.Markdown("# LLM-as-a-Rel: Automatic Relevance Judgment Leaderboard")
    gr.Markdown("Refer to the [LLMJudge overview paper](https://arxiv.org/pdf/2408.08896) for details on metrics, tasks and models.")
    
    # Initialize leaderboard at startup
    print("Starting leaderboard initialization...")
    initialize_leaderboard()
    print("Leaderboard initialization finished")

    # Model type filter
    model_type_filter = gr.CheckboxGroup(
        choices=list(model_types.keys()),
        value=list(model_types.keys()),
        label="Model types",
        interactive=True
    )
    
    # Initialize dataframes list
    all_dfs = []
    
    # Create nested tabs structure
    with gr.Tabs() as outer_tabs:
        with gr.TabItem("Synthesized (full)"):
            with gr.Tabs() as inner_tabs1:
                for dataset in ['AMAZON', 'MAG', 'PRIME']:
                    with gr.TabItem(dataset):
                        all_dfs.append(gr.DataFrame(interactive=False))
                        
        with gr.TabItem("Synthesized (10%)"):
            with gr.Tabs() as inner_tabs2:
                for dataset in ['AMAZON', 'MAG', 'PRIME']:
                    with gr.TabItem(dataset):
                        all_dfs.append(gr.DataFrame(interactive=False))
                        
        with gr.TabItem("Human-Generated"):
            with gr.Tabs() as inner_tabs3:
                for dataset in ['AMAZON', 'MAG', 'PRIME']:
                    with gr.TabItem(dataset):
                        all_dfs.append(gr.DataFrame(interactive=False))
    
    # Submission section

    # load test data
    test_data = load_test_data()

    gr.Markdown("---")
    gr.Markdown("## Submit Your Results:")
    gr.Markdown("""
    Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements.
    For questions, contact [email protected]. Detailed instructions can be referred at [submission instructions](https://docs.google.com/document/d/11coGjTmOEi9p9-PUq1oy0eTOj8f_8CVQhDl5_0FKT14/edit?usp=sharing).
    """)
    
    with gr.Row():
        with gr.Column():
            method_name = gr.Textbox(
                label="Method Name (max 25 chars)*",
                placeholder="e.g., MyRetrievalModel-v1"
            )
            dataset = gr.Dropdown(
                choices=["amazon", "mag", "prime"],
                label="Dataset*",
                value="amazon"
            )
            split = gr.Dropdown(
                choices=["test", "test-0.1", "human_generated_eval"],
                label="Split*",
                value="test"
            )
            team_name = gr.Textbox(
                label="Team Name (max 25 chars)*",
                placeholder="e.g., Stanford NLP"
            )
            contact_email = gr.Textbox(
                label="Contact Email(s)*",
                placeholder="[email protected]; [email protected]"
            )
            model_type = gr.Dropdown(
                choices=list(model_types.keys()),
                label="Model Type*",
                value="Others",
                info="Select the appropriate category for your model"
            )
            
        
        with gr.Column():
            model_description = gr.Textbox(
                label="Model Description*",
                lines=3,
                placeholder="Briefly describe how your retriever model works..."
            )
            code_repo = gr.Textbox(
                label="Code Repository*",
                placeholder="https://github.com/snap-stanford/stark-leaderboard"
            )
            hardware = gr.Textbox(
                label="Hardware Specifications*",
                placeholder="e.g., 4x NVIDIA A100 80GB"
            )
            csv_file = gr.File(
                label="Prediction TXT*",
                file_types=[".txt"],
                type="filepath"  
            )
            paper_link = gr.Textbox(
                label="Paper Link (Optional)",
                placeholder="https://arxiv.org/abs/..."
            )
    
    submit_btn = gr.Button("Submit", variant="primary")
    result = gr.Textbox(label="Submission Status", interactive=False)

    # Set up event handlers
    model_type_filter.change(
        update_tables,
        inputs=[model_type_filter],
        outputs=all_dfs
    )
    
    # Event handler for submission button
    submit_btn.click(
        fn=process_submission,
        inputs=[
            method_name, team_name, dataset, split, contact_email,
            code_repo, csv_file, model_description, hardware, paper_link, model_type
        ],
        outputs=result
    ).success(  # Add a success handler to update tables after successful submission
        fn=update_tables,
        inputs=[model_type_filter],
        outputs=all_dfs
    )
    
    # Initial table update
    demo.load(
        update_tables,
        inputs=[model_type_filter],
        outputs=all_dfs
    )

# Launch the application
demo.launch()