Spaces:
Sleeping
Sleeping
File size: 41,088 Bytes
e427008 a77a138 43dd1e4 a77a138 6ff5af2 a77a138 e427008 43dd1e4 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 e427008 a77a138 e427008 a77a138 e427008 a77a138 e427008 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 e427008 a77a138 0d282c0 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 43dd1e4 a77a138 2834bee 43dd1e4 2834bee a77a138 0d282c0 a77a138 43dd1e4 a77a138 e427008 a77a138 e427008 a77a138 43dd1e4 a77a138 e427008 a77a138 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 |
import gradio as gr
import pandas as pd
import numpy as np
import os
import re
from datetime import datetime
import json
import torch
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from huggingface_hub import HfApi
import shutil
import tempfile
from sklearn.metrics import cohen_kappa_score
import krippendorff
# from stark_qa import load_qa
# from stark_qa.evaluator import Evaluator
from utils.hub_storage import HubStorage
from utils.token_handler import TokenHandler
# Initialize storage once at startup
try:
REPO_ID = "rahmanidashti/llm-as-a-rel" # Replace with your space name
hub_storage = HubStorage(REPO_ID)
except Exception as e:
raise RuntimeError(f"Failed to initialize HuggingFace Hub storage: {e}")
def process_single_instance(args):
idx, eval_csv, qa_dataset, evaluator, eval_metrics = args
query, query_id, answer_ids, meta_info = qa_dataset[idx]
try:
pred_rank = eval_csv[eval_csv['query_id'] == query_id]['pred_rank'].item()
except IndexError:
raise IndexError(f'Error when processing query_id={query_id}, please make sure the predicted results exist for this query.')
except Exception as e:
raise RuntimeError(f'Unexpected error occurred while fetching prediction rank for query_id={query_id}: {e}')
if isinstance(pred_rank, str):
try:
pred_rank = eval(pred_rank)
except SyntaxError as e:
raise ValueError(f'Failed to parse pred_rank as a list for query_id={query_id}: {e}')
if not isinstance(pred_rank, list):
raise TypeError(f'Error when processing query_id={query_id}, expected pred_rank to be a list but got {type(pred_rank)}.')
pred_dict = {pred_rank[i]: -i for i in range(min(100, len(pred_rank)))}
answer_ids = torch.LongTensor(answer_ids)
result = evaluator.evaluate(pred_dict, answer_ids, metrics=eval_metrics)
result["idx"], result["query_id"] = idx, query_id
return result
def compute_metrics(csv_path: str, dataset: str, split: str, num_workers: int = 4):
"""
computing the metrics for the evaluation.
Parameters:
csv_path (str): The path to the submission file for evaluation.
"""
candidate_ids_dict = {
'amazon': [i for i in range(957192)],
'mag': [i for i in range(1172724, 1872968)],
'prime': [i for i in range(129375)]
}
try:
# eval_csv = pd.read_csv(csv_path)
eval_csv = pd.read_csv(csv_path, sep=" ", header=None, names=['qid', 'Q0', 'docid', 'score'])
eval_csv['score'] = [0 if x < 0 else 3 if x > 3 else x for x in eval_csv['score']]
test_eval_df = pd.merge(test_data, eval_csv, on=['qid', 'docid'], how='outer')
cohen_kappa = cohen_kappa_score(test_eval_df['score_x'], test_eval_df['score_y'])
krippendorff_alpha = krippendorff.alpha(reliability_data=[test_eval_df['score_x'], test_eval_df['score_y']], value_domain=[0,1,2,3], level_of_measurement='ordinal')
# if 'query_id' not in eval_csv.columns:
# raise ValueError('No `query_id` column found in the submitted csv.')
# if 'pred_rank' not in eval_csv.columns:
# raise ValueError('No `pred_rank` column found in the submitted csv.')
# eval_csv = eval_csv[['query_id', 'pred_rank']]
# if dataset not in candidate_ids_dict:
# raise ValueError(f"Invalid dataset '{dataset}', expected one of {list(candidate_ids_dict.keys())}.")
# if split not in ['test', 'test-0.1', 'human_generated_eval']:
# raise ValueError(f"Invalid split '{split}', expected one of ['test', 'test-0.1', 'human_generated_eval'].")
# evaluator = Evaluator(candidate_ids_dict[dataset])
# eval_metrics = ['hit@1', 'hit@5', 'recall@20', 'mrr']
# qa_dataset = load_qa(dataset, human_generated_eval=split == 'human_generated_eval')
# split_idx = qa_dataset.get_idx_split()
# all_indices = split_idx[split].tolist()
# results_list = []
# query_ids = []
# Prepare args for each worker
# args = [(idx, eval_csv, qa_dataset, evaluator, eval_metrics) for idx in all_indices]
# with ProcessPoolExecutor(max_workers=num_workers) as executor:
# futures = [executor.submit(process_single_instance, arg) for arg in args]
# for future in tqdm(as_completed(futures), total=len(futures)):
# result = future.result() # This will raise an error if the worker encountered one
# results_list.append(result)
# query_ids.append(result['query_id'])
# Concatenate results and compute final metrics
# eval_csv = pd.concat([eval_csv, pd.DataFrame(results_list)], ignore_index=True)
final_results = {
# metric: np.mean(eval_csv[eval_csv['query_id'].isin(query_ids)][metric]) for metric in eval_metrics
'kappa': round(cohen_kappa, 4),
'alpha': round(krippendorff_alpha, 4)
}
return final_results
except pd.errors.EmptyDataError:
return "Error: The CSV file is empty or could not be read. Please check the file and try again."
except FileNotFoundError:
return f"Error: The file {csv_path} could not be found. Please check the file path and try again."
except Exception as error:
return f"{error}"
# Data dictionaries for leaderboard
data_synthesized_full = {
'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)'],
'LLMJudge-DL2023_Kappa': [44.94, 15.29, 30.96],
'LLMJudge-DL2023_Alpha': [67.42, 47.93, 51.06],
}
# data_synthesized_full = {
# 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2'],
# 'STARK-AMAZON_Hit@1': [44.94, 15.29, 30.96, 26.56, 39.16, 40.93, 21.74, 42.08, 40.07, 46.10],
# 'STARK-AMAZON_Hit@5': [67.42, 47.93, 51.06, 50.01, 62.73, 64.37, 41.65, 66.87, 64.98, 66.02],
# 'STARK-AMAZON_R@20': [53.77, 44.49, 41.95, 52.05, 53.29, 54.28, 33.22, 56.52, 55.12, 53.44],
# 'STARK-AMAZON_MRR': [55.30, 30.20, 40.66, 37.75, 50.35, 51.60, 31.47, 53.46, 51.55, 55.51],
# 'STARK-MAG_Hit@1': [25.85, 10.51, 21.96, 12.88, 29.08, 30.06, 18.01, 37.90, 25.92, 31.18],
# 'STARK-MAG_Hit@5': [45.25, 35.23, 36.50, 39.01, 49.61, 50.58, 34.85, 56.74, 50.43, 46.42],
# 'STARK-MAG_R@20': [45.69, 42.11, 35.32, 46.97, 48.36, 50.49, 35.46, 46.40, 50.80, 43.94],
# 'STARK-MAG_MRR': [34.91, 21.34, 29.14, 29.12, 38.62, 39.66, 26.10, 47.25, 36.94, 38.39],
# 'STARK-PRIME_Hit@1': [12.75, 4.46, 6.53, 8.85, 12.63, 10.85, 10.10, 15.57, 15.10, 11.75],
# 'STARK-PRIME_Hit@5': [27.92, 21.85, 15.67, 21.35, 31.49, 30.23, 22.49, 33.42, 33.56, 23.85],
# 'STARK-PRIME_R@20': [31.25, 30.13, 16.52, 29.63, 36.00, 37.83, 26.34, 39.09, 38.05, 25.04],
# 'STARK-PRIME_MRR': [19.84, 12.38, 11.05, 14.73, 21.41, 19.99, 16.12, 24.11, 23.49, 17.39]
# }
# data_synthesized_10 = {
# 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
# 'STARK-AMAZON_Hit@1': [42.68, 16.46, 30.09, 25.00, 39.02, 43.29, 18.90, 43.29, 40.85, 44.31, 45.49, 44.79],
# 'STARK-AMAZON_Hit@5': [67.07, 50.00, 49.27, 48.17, 64.02, 67.68, 37.80, 71.34, 62.80, 65.24, 71.13, 71.17],
# 'STARK-AMAZON_R@20': [54.48, 42.15, 41.91, 51.65, 49.30, 56.04, 34.73, 56.14, 52.47, 51.00, 53.77, 55.35],
# 'STARK-AMAZON_MRR': [54.02, 30.20, 39.30, 36.87, 50.32, 54.20, 28.76, 55.07, 51.54, 55.07, 55.91, 55.69],
# 'STARK-MAG_Hit@1': [27.81, 11.65, 22.89, 12.03, 28.20, 34.59, 19.17, 38.35, 25.56, 31.58, 36.54, 40.90],
# 'STARK-MAG_Hit@5': [45.48, 36.84, 37.26, 37.97, 52.63, 50.75, 33.46, 58.64, 50.37, 47.36, 53.17, 58.18],
# 'STARK-MAG_R@20': [44.59, 42.30, 44.16, 47.98, 49.25, 50.75, 29.85, 46.38, 53.03, 45.72, 48.36, 48.60],
# 'STARK-MAG_MRR': [35.97, 21.82, 30.00, 28.70, 38.55, 42.90, 26.06, 48.25, 36.82, 38.98, 44.15, 49.00],
# 'STARK-PRIME_Hit@1': [13.93, 5.00, 6.78, 7.14, 15.36, 12.14, 9.29, 16.79, 15.36, 15.00, 17.79, 18.28],
# 'STARK-PRIME_Hit@5': [31.07, 23.57, 16.15, 17.14, 31.07, 31.42, 20.7, 34.29, 32.86, 26.07, 36.90, 37.28],
# 'STARK-PRIME_R@20': [32.84, 30.50, 17.07, 32.95, 37.88, 37.34, 25.54, 41.11, 40.99, 27.78, 35.57, 34.05],
# 'STARK-PRIME_MRR': [21.68, 13.50, 11.42, 16.27, 23.50, 21.23, 15.00, 24.99, 23.70, 19.98, 26.27, 26.55]
# }
# data_human_generated = {
# 'Method': ['BM25', 'DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)', 'ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b', 'multi-ada-002', 'ColBERTv2', 'Claude3 Reranker', 'GPT4 Reranker'],
# 'STARK-AMAZON_Hit@1': [27.16, 16.05, 25.93, 22.22, 39.50, 35.80, 29.63, 40.74, 46.91, 33.33, 53.09, 50.62],
# 'STARK-AMAZON_Hit@5': [51.85, 39.51, 54.32, 49.38, 64.19, 62.96, 46.91, 71.60, 72.84, 55.56, 74.07, 75.31],
# 'STARK-AMAZON_R@20': [29.23, 15.23, 23.69, 21.54, 35.46, 33.01, 21.21, 36.30, 40.22, 29.03, 35.46, 35.46],
# 'STARK-AMAZON_MRR': [18.79, 27.21, 37.12, 31.33, 52.65, 47.84, 38.61, 53.21, 58.74, 43.77, 62.11, 61.06],
# 'STARK-MAG_Hit@1': [32.14, 4.72, 25.00, 20.24, 28.57, 22.62, 16.67, 34.52, 23.81, 33.33, 38.10, 36.90],
# 'STARK-MAG_Hit@5': [41.67, 9.52, 30.95, 26.19, 41.67, 36.90, 28.57, 44.04, 41.67, 36.90, 45.24, 46.43],
# 'STARK-MAG_R@20': [32.46, 25.00, 27.24, 28.76, 35.95, 32.44, 21.74, 34.57, 39.85, 30.50, 35.95, 35.95],
# 'STARK-MAG_MRR': [37.42, 7.90, 27.98, 25.53, 35.81, 29.68, 21.59, 38.72, 31.43, 35.97, 42.00, 40.65],
# 'STARK-PRIME_Hit@1': [22.45, 2.04, 7.14, 6.12, 17.35, 16.33, 9.18, 25.51, 24.49, 15.31, 28.57, 28.57],
# 'STARK-PRIME_Hit@5': [41.84, 9.18, 13.27, 13.27, 34.69, 32.65, 21.43, 41.84, 39.80, 26.53, 46.94, 44.90],
# 'STARK-PRIME_R@20': [42.32, 10.69, 11.72, 17.62, 41.09, 39.01, 26.77, 48.10, 47.21, 25.56, 41.61, 41.61],
# 'STARK-PRIME_MRR': [30.37, 7.05, 10.07, 9.39, 26.35, 24.33, 15.24, 34.28, 32.98, 19.67, 36.32, 34.82]
# }
# Initialize DataFrames
df_synthesized_full = pd.DataFrame(data_synthesized_full)
# df_synthesized_10 = pd.DataFrame(data_synthesized_10)
# df_human_generated = pd.DataFrame(data_human_generated)
# Model type definitions
model_types = {
'Sparse Retriever': ['BM25'],
'Small Dense Retrievers': ['DPR (roberta)', 'ANCE (roberta)', 'QAGNN (roberta)'],
'LLM-based Dense Retrievers': ['ada-002', 'voyage-l2-instruct', 'LLM2Vec', 'GritLM-7b'],
'Multivector Retrievers': ['multi-ada-002', 'ColBERTv2'],
'LLM Rerankers': ['Claude3 Reranker', 'GPT4 Reranker'],
'Others': [] # Will be populated dynamically with submitted models
}
# Submission form validation functions
def validate_email(email_str):
"""Validate email format(s)"""
emails = [e.strip() for e in email_str.split(';')]
email_pattern = re.compile(r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$')
return all(email_pattern.match(email) for email in emails)
def validate_github_url(url):
"""Validate GitHub URL format"""
github_pattern = re.compile(
r'^https?:\/\/(?:www\.)?github\.com\/[\w-]+\/[\w.-]+\/?$'
)
return bool(github_pattern.match(url))
def validate_csv(file_obj):
"""Validate CSV file format and content"""
try:
df = pd.read_csv(file_obj.name)
required_cols = ['query_id', 'pred_rank']
if not all(col in df.columns for col in required_cols):
return False, "CSV must contain 'query_id' and 'pred_rank' columns"
try:
first_rank = eval(df['pred_rank'].iloc[0]) if isinstance(df['pred_rank'].iloc[0], str) else df['pred_rank'].iloc[0]
if not isinstance(first_rank, list) or len(first_rank) < 20:
return False, "pred_rank must be a list with at least 20 candidates"
except:
return False, "Invalid pred_rank format"
return True, "Valid CSV file"
except Exception as e:
return False, f"Error processing CSV: {str(e)}"
def sanitize_name(name):
"""Sanitize name for file system use"""
return re.sub(r'[^a-zA-Z0-9]', '_', name)
def read_json_from_hub(api: HfApi, repo_id: str, file_path: str) -> dict:
"""
Read and parse JSON file from HuggingFace Hub.
Args:
api: HuggingFace API instance
repo_id: Repository ID
file_path: Path to file in repository
Returns:
dict: Parsed JSON content
"""
try:
# Download the file content as bytes
content = api.hf_hub_download(
repo_id=repo_id,
filename=file_path,
repo_type="space"
)
# Read and parse JSON
with open(content, 'r') as f:
return json.load(f)
except Exception as e:
print(f"Error reading JSON file {file_path}: {str(e)}")
return None
def scan_submissions_directory():
"""
Scans the submissions directory and updates the model types dictionary
with submitted models.
"""
try:
# Initialize HuggingFace API
api = HfApi()
# Track submissions for each split
submissions_by_split = {
'test': [],
'test-0.1': [],
'human_generated_eval': []
}
# Get all files from repository
try:
all_files = api.list_repo_files(
repo_id=REPO_ID,
repo_type="space"
)
# Filter for files in submissions directory
repo_files = [f for f in all_files if f.startswith('submissions/')]
except Exception as e:
print(f"Error listing repository contents: {str(e)}")
return submissions_by_split
# Group files by team folders
folder_files = {}
for filepath in repo_files:
parts = filepath.split('/')
if len(parts) < 3: # Need at least submissions/team_folder/file
continue
folder_name = parts[1] # team_folder name
if folder_name not in folder_files:
folder_files[folder_name] = []
folder_files[folder_name].append(filepath)
# Process each team folder
for folder_name, files in folder_files.items():
try:
# Find latest.json in this folder
latest_file = next((f for f in files if f.endswith('latest.json')), None)
if not latest_file:
print(f"No latest.json found in {folder_name}")
continue
# Read latest.json
latest_info = read_json_from_hub(api, REPO_ID, latest_file)
if not latest_info:
print(f"Failed to read latest.json for {folder_name}")
continue
timestamp = latest_info.get('latest_submission')
if not timestamp:
print(f"No timestamp found in latest.json for {folder_name}")
continue
# Find metadata file for latest submission
metadata_file = next(
(f for f in files if f.endswith(f'metadata_{timestamp}.json')),
None
)
if not metadata_file:
print(f"No matching metadata file found for {folder_name} timestamp {timestamp}")
continue
# Read metadata file
submission_data = read_json_from_hub(api, REPO_ID, metadata_file)
if not submission_data:
print(f"Failed to read metadata for {folder_name}")
continue
if latest_info.get('status') != 'approved':
print(f"Skipping unapproved submission in {folder_name}")
continue
# Add to submissions by split
split = submission_data.get('Split')
if split in submissions_by_split:
submissions_by_split[split].append(submission_data)
# Update model types if necessary
method_name = submission_data.get('Method Name')
model_type = submission_data.get('Model Type', 'Others')
# Add to model type if it's a new method
method_exists = any(method_name in methods for methods in model_types.values())
if not method_exists and model_type in model_types:
model_types[model_type].append(method_name)
except Exception as e:
print(f"Error processing folder {folder_name}: {str(e)}")
continue
return submissions_by_split
except Exception as e:
print(f"Error scanning submissions directory: {str(e)}")
return None
def initialize_leaderboard():
"""
Initialize the leaderboard with baseline results and submitted results.
"""
# global df_synthesized_full, df_synthesized_10, df_human_generated
global df_synthesized_full
try:
# First, initialize with baseline results
df_synthesized_full = pd.DataFrame(data_synthesized_full)
# df_synthesized_10 = pd.DataFrame(data_synthesized_10)
# df_human_generated = pd.DataFrame(data_human_generated)
print("Initialized with baseline results")
# Then scan and add submitted results
submissions = scan_submissions_directory()
if submissions:
for split, split_submissions in submissions.items():
for submission in split_submissions:
if submission.get('results'): # Make sure we have results
# Update appropriate DataFrame based on split
if split == 'test':
df_to_update = df_synthesized_full
elif split == 'test-0.1':
df_to_update = df_synthesized_10
else: # human_generated_eval
df_to_update = df_human_generated
# Prepare new row data
new_row = {
'Method': submission['Method Name'],
f'STARK-{submission["Dataset"].upper()}_Hit@1': submission['results']['hit@1'],
f'STARK-{submission["Dataset"].upper()}_Hit@5': submission['results']['hit@5'],
f'STARK-{submission["Dataset"].upper()}_R@20': submission['results']['recall@20'],
f'STARK-{submission["Dataset"].upper()}_MRR': submission['results']['mrr']
}
# Update existing row or add new one
method_mask = df_to_update['Method'] == submission['Method Name']
if method_mask.any():
for col in new_row:
df_to_update.loc[method_mask, col] = new_row[col]
else:
df_to_update.loc[len(df_to_update)] = new_row
print("Leaderboard initialization complete")
except Exception as e:
print(f"Error initializing leaderboard: {str(e)}")
def get_file_content(file_path):
"""
Helper function to safely read file content from HuggingFace repository
"""
try:
api = HfApi()
content_path = api.hf_hub_download(
repo_id=REPO_ID,
filename=file_path,
repo_type="space"
)
with open(content_path, 'r') as f:
return f.read()
except Exception as e:
print(f"Error reading file {file_path}: {str(e)}")
return None
def save_submission(submission_data, csv_file):
"""
Save submission data and CSV file using model_name_team_name format
Args:
submission_data (dict): Metadata and results for the submission
csv_file: The uploaded CSV file object
"""
# Create folder name from model name and team name
model_name_clean = sanitize_name(submission_data['Method Name'])
team_name_clean = sanitize_name(submission_data['Team Name'])
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
# Create folder name: model_name_team_name
folder_name = f"{model_name_clean}_{team_name_clean}"
submission_id = f"{folder_name}_{timestamp}"
# Create submission directory structure
base_dir = "submissions"
submission_dir = os.path.join(base_dir, folder_name)
os.makedirs(submission_dir, exist_ok=True)
# Save CSV file with timestamp to allow multiple submissions
csv_filename = f"predictions_{timestamp}.csv"
csv_path = os.path.join(submission_dir, csv_filename)
if hasattr(csv_file, 'name'):
with open(csv_file.name, 'rb') as source, open(csv_path, 'wb') as target:
target.write(source.read())
# Add file paths to submission data
submission_data.update({
"csv_path": csv_path,
"submission_id": submission_id,
"folder_name": folder_name
})
# Save metadata as JSON with timestamp
metadata_path = os.path.join(submission_dir, f"metadata_{timestamp}.json")
with open(metadata_path, 'w') as f:
json.dump(submission_data, f, indent=4)
# Update latest.json to track most recent submission
latest_path = os.path.join(submission_dir, "latest.json")
with open(latest_path, 'w') as f:
json.dump({
"latest_submission": timestamp,
"status": "pending_review",
"method_name": submission_data['Method Name']
}, f, indent=4)
return submission_id
def update_leaderboard_data(submission_data):
"""
Update leaderboard data with new submission results
Only uses model name in the displayed table
"""
global df_synthesized_full, df_synthesized_10, df_human_generated
# Determine which DataFrame to update based on split
split_to_df = {
'test': df_synthesized_full,
'test-0.1': df_synthesized_10,
'human_generated_eval': df_human_generated
}
df_to_update = split_to_df[submission_data['Split']]
# Prepare new row data
new_row = {
'Method': submission_data['Method Name'], # Only use method name in table
f'STARK-{submission_data["Dataset"].upper()}_Hit@1': submission_data['results']['hit@1'],
f'STARK-{submission_data["Dataset"].upper()}_Hit@5': submission_data['results']['hit@5'],
f'STARK-{submission_data["Dataset"].upper()}_R@20': submission_data['results']['recall@20'],
f'STARK-{submission_data["Dataset"].upper()}_MRR': submission_data['results']['mrr']
}
# Check if method already exists
method_mask = df_to_update['Method'] == submission_data['Method Name']
if method_mask.any():
# Update existing row
for col in new_row:
df_to_update.loc[method_mask, col] = new_row[col]
else:
# Add new row
df_to_update.loc[len(df_to_update)] = new_row
# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
"""
Extracts emails from the meta_data dictionary.
Args:
meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
Returns:
list: A list of email addresses.
"""
return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]
# Function to format meta_data as an HTML table (without Prediction CSV)
def format_metadata_as_table(meta_data):
"""
Formats metadata dictionary into an HTML table for the email.
Handles multiple contact emails separated by a semicolon.
Args:
meta_data (dict): Dictionary containing submission metadata.
Returns:
str: HTML string representing the metadata table.
"""
table_rows = ""
for key, value in meta_data.items():
if key == "Contact Email(s)":
# Ensure that contact emails are split by semicolon
emails = value.split(';')
formatted_emails = "; ".join([email.strip() for email in emails])
table_rows += f"<tr><td><b>{key}</b></td><td>{formatted_emails}</td></tr>"
elif key != "Prediction CSV": # Exclude the Prediction CSV field
table_rows += f"<tr><td><b>{key}</b></td><td>{value}</td></tr>"
table_html = f"""
<table border="1" cellpadding="5" cellspacing="0">
{table_rows}
</table>
"""
return table_html
# Function to get emails from meta_data
def get_emails_from_metadata(meta_data):
"""
Extracts emails from the meta_data dictionary.
Args:
meta_data (dict): The metadata dictionary that contains the 'Contact Email(s)' field.
Returns:
list: A list of email addresses.
"""
return [email.strip() for email in meta_data.get("Contact Email(s)", "").split(";")]
def format_evaluation_results(results):
"""
Formats the evaluation results dictionary into a readable string.
Args:
results (dict): Dictionary containing evaluation metrics and their values.
Returns:
str: Formatted string of evaluation results.
"""
result_lines = [f"{metric}: {value}" for metric, value in results.items()]
return "\n".join(result_lines)
def get_model_type_for_method(method_name):
"""
Find the model type category for a given method name.
Returns 'Others' if not found in predefined categories.
"""
for type_name, methods in model_types.items():
if method_name in methods:
return type_name
return 'Others'
def validate_model_type(method_name, selected_type):
"""
Validate if the selected model type is appropriate for the method name.
Returns (is_valid, message).
"""
# Check if method exists in any category
existing_type = None
for type_name, methods in model_types.items():
if method_name in methods:
existing_type = type_name
break
# If method exists, it must be submitted under its predefined category
if existing_type:
if existing_type != selected_type:
return False, f"This method name is already registered under '{existing_type}'. Please use the correct category."
return True, "Valid model type"
# For new methods, any category is valid
return True, "Valid model type"
def process_submission(method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_description, hardware, paper_link, model_type):
"""Process and validate submission"""
temp_files = []
try:
# Input validation
if not all([method_name, team_name, dataset, split, contact_email, code_repo, csv_file, model_type]):
return "Error: Please fill in all required fields"
# Validate model type
is_valid, message = validate_model_type(method_name, model_type)
if not is_valid:
return f"Error: {message}"
# Create metadata
meta_data = {
"Method Name": method_name,
"Team Name": team_name,
"Dataset": dataset,
"Split": split,
"Contact Email(s)": contact_email,
"Code Repository": code_repo,
"Model Description": model_description,
"Hardware": hardware,
"(Optional) Paper link": paper_link,
"Model Type": model_type
}
# Generate folder name and timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
folder_name = f"{sanitize_name(method_name)}_{sanitize_name(team_name)}"
# Process CSV file
temp_csv_path = None
if isinstance(csv_file, str):
temp_csv_path = csv_file
else:
temp_fd, temp_csv_path = tempfile.mkstemp(suffix='.csv')
temp_files.append(temp_csv_path)
os.close(temp_fd)
if hasattr(csv_file, 'name'):
shutil.copy2(csv_file.name, temp_csv_path)
else:
with open(temp_csv_path, 'wb') as temp_file:
if hasattr(csv_file, 'seek'):
csv_file.seek(0)
if hasattr(csv_file, 'read'):
shutil.copyfileobj(csv_file, temp_file)
else:
temp_file.write(csv_file)
if not os.path.exists(temp_csv_path):
raise FileNotFoundError(f"Failed to create temporary CSV file at {temp_csv_path}")
# Compute metrics
results = compute_metrics(
csv_path=temp_csv_path,
dataset=dataset.lower(),
split=split,
num_workers=4
)
if isinstance(results, str):
# send_error_notification(meta_data, results)
return f"Evaluation error: {results}"
# Process results
processed_results = {
"hit@1": round(results['hit@1'] * 100, 2),
"hit@5": round(results['hit@5'] * 100, 2),
"recall@20": round(results['recall@20'] * 100, 2),
"mrr": round(results['mrr'] * 100, 2)
}
# Save files to HuggingFace Hub
try:
# 1. Save CSV file
csv_filename = f"predictions_{timestamp}.csv"
csv_path_in_repo = f"submissions/{folder_name}/{csv_filename}"
hub_storage.save_to_hub(
file_content=temp_csv_path,
path_in_repo=csv_path_in_repo,
commit_message=f"Add submission: {method_name} by {team_name}"
)
# 2. Save metadata
submission_data = {
**meta_data,
"results": processed_results,
"status": "approved", # or "pending_review"
"submission_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"csv_path": csv_path_in_repo
}
metadata_fd, temp_metadata_path = tempfile.mkstemp(suffix='.json')
temp_files.append(temp_metadata_path)
os.close(metadata_fd)
with open(temp_metadata_path, 'w') as f:
json.dump(submission_data, f, indent=4)
metadata_path = f"submissions/{folder_name}/metadata_{timestamp}.json"
hub_storage.save_to_hub(
file_content=temp_metadata_path,
path_in_repo=metadata_path,
commit_message=f"Add metadata: {method_name} by {team_name}"
)
# 3. Create or update latest.json
latest_info = {
"latest_submission": timestamp,
"status": "approved", # or "pending_review"
"method_name": method_name,
"team_name": team_name
}
latest_fd, temp_latest_path = tempfile.mkstemp(suffix='.json')
temp_files.append(temp_latest_path)
os.close(latest_fd)
with open(temp_latest_path, 'w') as f:
json.dump(latest_info, f, indent=4)
latest_path = f"submissions/{folder_name}/latest.json"
hub_storage.save_to_hub(
file_content=temp_latest_path,
path_in_repo=latest_path,
commit_message=f"Update latest submission info for {method_name}"
)
except Exception as e:
raise RuntimeError(f"Failed to save files to HuggingFace Hub: {str(e)}")
# Send confirmation email and update leaderboard data
# send_submission_confirmation(meta_data, processed_results)
update_leaderboard_data(submission_data)
# Return success message
return f"""
Submission successful!
Evaluation Results:
Hit@1: {processed_results['hit@1']:.2f}%
Hit@5: {processed_results['hit@5']:.2f}%
Recall@20: {processed_results['recall@20']:.2f}%
MRR: {processed_results['mrr']:.2f}%
Your submission has been saved and a confirmation email has been sent to {contact_email}.
Once approved, your results will appear in the leaderboard under: {method_name}
You can find your submission at:
https://huggingface.co/spaces/{REPO_ID}/tree/main/submissions/{folder_name}
Please refresh the page to see your submission in the leaderboard.
"""
except Exception as e:
error_message = f"Error processing submission: {str(e)}"
# send_error_notification(meta_data, error_message)
return error_message
finally:
# Clean up temporary files
for temp_file in temp_files:
try:
if os.path.exists(temp_file):
os.unlink(temp_file)
except Exception as e:
print(f"Warning: Failed to delete temporary file {temp_file}: {str(e)}")
def filter_by_model_type(df, selected_types):
"""
Filter DataFrame by selected model types, including submitted models.
"""
if not selected_types:
return df.head(0)
# Get all models from selected types
selected_models = []
for type_name in selected_types:
selected_models.extend(model_types[type_name])
# Filter DataFrame to include only selected models
return df[df['Method'].isin(selected_models)]
def format_dataframe(df, dataset):
columns = ['Method'] + [col for col in df.columns if dataset in col]
filtered_df = df[columns].copy()
filtered_df.columns = [col.split('_')[-1] if '_' in col else col for col in filtered_df.columns]
filtered_df = filtered_df.sort_values('MRR', ascending=False)
return filtered_df
def update_tables(selected_types):
"""
Update tables based on selected model types.
Include all models from selected categories.
"""
if not selected_types:
# return [df.head(0) for df in [df_synthesized_full, df_synthesized_10, df_human_generated]]
return [df.head(0) for df in [df_synthesized_full]]
filtered_df_full = filter_by_model_type(df_synthesized_full, selected_types)
# filtered_df_10 = filter_by_model_type(df_synthesized_10, selected_types)
# filtered_df_human = filter_by_model_type(df_human_generated, selected_types)
outputs = []
# for df in [filtered_df_full, filtered_df_10, filtered_df_human]:
for df in [filtered_df_full]:
for dataset in ['DL2023', 'MAG', 'PRIME']:
outputs.append(format_dataframe(df, f"LLMJudge-{dataset}"))
return outputs
def load_test_data():
# Split the text into a list
test_data = os.getenv('LLMJudgeTest').split()
# Reshape the list into a 2D array where each row contains 4 elements
test_data = [test_data[i:i+4] for i in range(0, len(test_data), 4)]
# Create a DataFrame
test_data = pd.DataFrame(test_data, columns=['qid', 'Q0', 'pid', 'score'])
return test_data
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.tab-nav {
border-bottom: 1px solid rgba(255, 255, 255, 0.1);
margin-bottom: 1rem;
}
"""
# Main application
with gr.Blocks(css=css) as demo:
gr.Markdown("# LLM-as-a-Rel: Automatic Relevance Judgment Leaderboard")
gr.Markdown("Refer to the [LLMJudge overview paper](https://arxiv.org/pdf/2408.08896) for details on metrics, tasks and models.")
# Initialize leaderboard at startup
print("Starting leaderboard initialization...")
initialize_leaderboard()
print("Leaderboard initialization finished")
# Model type filter
model_type_filter = gr.CheckboxGroup(
choices=list(model_types.keys()),
value=list(model_types.keys()),
label="Model types",
interactive=True
)
# Initialize dataframes list
all_dfs = []
# Create nested tabs structure
with gr.Tabs() as outer_tabs:
with gr.TabItem("Synthesized (full)"):
with gr.Tabs() as inner_tabs1:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Synthesized (10%)"):
with gr.Tabs() as inner_tabs2:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
with gr.TabItem("Human-Generated"):
with gr.Tabs() as inner_tabs3:
for dataset in ['AMAZON', 'MAG', 'PRIME']:
with gr.TabItem(dataset):
all_dfs.append(gr.DataFrame(interactive=False))
# Submission section
# load test data
test_data = load_test_data()
gr.Markdown("---")
gr.Markdown("## Submit Your Results:")
gr.Markdown("""
Submit your results to be included in the leaderboard. Please ensure your submission meets all requirements.
For questions, contact [email protected]. Detailed instructions can be referred at [submission instructions](https://docs.google.com/document/d/11coGjTmOEi9p9-PUq1oy0eTOj8f_8CVQhDl5_0FKT14/edit?usp=sharing).
""")
with gr.Row():
with gr.Column():
method_name = gr.Textbox(
label="Method Name (max 25 chars)*",
placeholder="e.g., MyRetrievalModel-v1"
)
dataset = gr.Dropdown(
choices=["amazon", "mag", "prime"],
label="Dataset*",
value="amazon"
)
split = gr.Dropdown(
choices=["test", "test-0.1", "human_generated_eval"],
label="Split*",
value="test"
)
team_name = gr.Textbox(
label="Team Name (max 25 chars)*",
placeholder="e.g., Stanford NLP"
)
contact_email = gr.Textbox(
label="Contact Email(s)*",
placeholder="[email protected]; [email protected]"
)
model_type = gr.Dropdown(
choices=list(model_types.keys()),
label="Model Type*",
value="Others",
info="Select the appropriate category for your model"
)
with gr.Column():
model_description = gr.Textbox(
label="Model Description*",
lines=3,
placeholder="Briefly describe how your retriever model works..."
)
code_repo = gr.Textbox(
label="Code Repository*",
placeholder="https://github.com/snap-stanford/stark-leaderboard"
)
hardware = gr.Textbox(
label="Hardware Specifications*",
placeholder="e.g., 4x NVIDIA A100 80GB"
)
csv_file = gr.File(
label="Prediction TXT*",
file_types=[".txt"],
type="filepath"
)
paper_link = gr.Textbox(
label="Paper Link (Optional)",
placeholder="https://arxiv.org/abs/..."
)
submit_btn = gr.Button("Submit", variant="primary")
result = gr.Textbox(label="Submission Status", interactive=False)
# Set up event handlers
model_type_filter.change(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Event handler for submission button
submit_btn.click(
fn=process_submission,
inputs=[
method_name, team_name, dataset, split, contact_email,
code_repo, csv_file, model_description, hardware, paper_link, model_type
],
outputs=result
).success( # Add a success handler to update tables after successful submission
fn=update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Initial table update
demo.load(
update_tables,
inputs=[model_type_filter],
outputs=all_dfs
)
# Launch the application
demo.launch() |