Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 3 |
+
from datasets import concatenate_datasets, load_dataset
|
| 4 |
+
import gc
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from peft import PeftModel, PeftConfig
|
| 7 |
+
from langchain.chains import RetrievalQA
|
| 8 |
+
from langchain_community.vectorstores import FAISS
|
| 9 |
+
from langchain.embeddings import OpenAIEmbeddings
|
| 10 |
+
from langchain.docstore.document import Document
|
| 11 |
+
from langchain.llms import HuggingFacePipeline
|
| 12 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 13 |
+
from langchain.chains.question_answering import load_qa_chain
|
| 14 |
+
from langchain.prompts import PromptTemplate
|
| 15 |
+
import torch
|
| 16 |
+
import random
|
| 17 |
+
from langchain.document_loaders import WebBaseLoader
|
| 18 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 19 |
+
from langchain.memory import ConversationBufferMemory
|
| 20 |
+
import requests
|
| 21 |
+
import re
|
| 22 |
+
|
| 23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 24 |
+
|
| 25 |
+
# Load Samsum dataset for generating questions
|
| 26 |
+
train_dataset = load_dataset("samsum", split='train', trust_remote_code=True)
|
| 27 |
+
val_dataset = load_dataset("samsum", split='validation', trust_remote_code=True)
|
| 28 |
+
samsum_dataset = concatenate_datasets([train_dataset, val_dataset])
|
| 29 |
+
|
| 30 |
+
model_name = "google/flan-t5-base"
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 32 |
+
base_model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
|
| 33 |
+
rlhf_model_path = "raghav-gaggar/PEFT_RLHF_TextSummarizer"
|
| 34 |
+
config = PeftConfig.from_pretrained(rlhf_model_path)
|
| 35 |
+
ppo_model = PeftModel.from_pretrained(base_model, rlhf_model_path).to(device)
|
| 36 |
+
merged_model = ppo_model.merge_and_unload().to(device)
|
| 37 |
+
|
| 38 |
+
base_model.eval()
|
| 39 |
+
ppo_model.eval()
|
| 40 |
+
merged_model.eval()
|
| 41 |
+
|
| 42 |
+
dialogsum_dataset = load_dataset("knkarthick/dialogsum", trust_remote_code=True)
|
| 43 |
+
|
| 44 |
+
def format_dialogsum_as_document(example):
|
| 45 |
+
return Document(page_content=f"Dialogue:\n {example['dialogue']}\n\nSummary: {example['summary']}")
|
| 46 |
+
|
| 47 |
+
# Create documents from DialogSum dataset
|
| 48 |
+
documents = []
|
| 49 |
+
for split in ['train', 'validation', 'test']:
|
| 50 |
+
documents.extend([format_dialogsum_as_document(example) for example in dialogsum_dataset[split]])
|
| 51 |
+
|
| 52 |
+
# Split the documents into chunks
|
| 53 |
+
text_splitter = CharacterTextSplitter(chunk_size=5200, chunk_overlap=0)
|
| 54 |
+
docs = text_splitter.split_documents(documents)
|
| 55 |
+
|
| 56 |
+
# Create embeddings and vector store for DialogSum documents
|
| 57 |
+
embeddings = HuggingFaceEmbeddings(
|
| 58 |
+
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 59 |
+
model_kwargs={"device": "cuda" if torch.cuda.is_available() else "cpu"},
|
| 60 |
+
encode_kwargs={"batch_size": 32}
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
vector_store = FAISS.from_documents(docs, embeddings)
|
| 64 |
+
|
| 65 |
+
# Initialize retriever for DialogSum documents
|
| 66 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 1})
|
| 67 |
+
|
| 68 |
+
prompt_template = """
|
| 69 |
+
Concisely summarize the dialogue in the end, like the example provided -
|
| 70 |
+
|
| 71 |
+
Example -
|
| 72 |
+
{context}
|
| 73 |
+
|
| 74 |
+
Dialogue to be summarized:
|
| 75 |
+
{question}
|
| 76 |
+
|
| 77 |
+
Summary:"""
|
| 78 |
+
|
| 79 |
+
PROMPT = PromptTemplate(
|
| 80 |
+
template=prompt_template, input_variables=["context", "question"]
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Create a Hugging Face pipeline
|
| 84 |
+
summarization_pipeline = pipeline(
|
| 85 |
+
"summarization",
|
| 86 |
+
model=merged_model,
|
| 87 |
+
tokenizer=tokenizer,
|
| 88 |
+
max_length=150,
|
| 89 |
+
min_length=20,
|
| 90 |
+
do_sample=False,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
# Wrap the pipeline in a LangChain LLM
|
| 94 |
+
llm = HuggingFacePipeline(pipeline=summarization_pipeline)
|
| 95 |
+
|
| 96 |
+
qa_chain = RetrievalQA.from_chain_type(
|
| 97 |
+
llm, retriever=retriever, chain_type_kwargs={"prompt": PROMPT}
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Function for Gradio interface
|
| 101 |
+
def summarize_conversation(question):
|
| 102 |
+
result = qa_chain({"query": question})
|
| 103 |
+
return result["result"]
|
| 104 |
+
|
| 105 |
+
# Create Gradio interface
|
| 106 |
+
iface = gr.Interface(
|
| 107 |
+
fn=summarize_conversation,
|
| 108 |
+
inputs=gr.Textbox(lines=10, label="Enter conversation here"),
|
| 109 |
+
outputs=gr.Textbox(label="Summary"),
|
| 110 |
+
title="Conversation Summarizer",
|
| 111 |
+
description="Enter a conversation, and the AI will provide a concise summary."
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# Launch the app
|
| 115 |
+
iface.launch()
|