MiniCPM-test / app.py
ragavendran-r's picture
Create app.py
d7277b4 verified
raw
history blame
738 Bytes
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Specify the model name from Hugging Face Hub
model_name = "openbmb/MiniCPM-V"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
def generate_text(prompt):
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=50)
# Decode tokens to text
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Create a simple Gradio interface
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="MiniCPM-V Demo")
iface.launch()