Raffaele Terribile commited on
Commit
ebf64aa
·
unverified ·
1 Parent(s): f2c07a5

Rimuovi dipendenze non più necessarie e limita token generati

Browse files
Files changed (2) hide show
  1. app.py +5 -28
  2. requirements.txt +1 -5
app.py CHANGED
@@ -5,27 +5,7 @@ import requests
5
  import inspect
6
  import pandas as pd
7
 
8
- # =============================================================================
9
- # MODIFICHE APPORTATE PER RISOLVERE L'ERRORE "generate" NON TROVATO:
10
- #
11
- # PROBLEMA ORIGINALE:
12
- # - Il pipeline di Transformers non è direttamente compatibile con smolagents
13
- # - CodeAgent si aspetta un'interfaccia specifica che pipeline non implementa
14
- # - L'errore "generate" si verificava perché smolagents cercava metodi non presenti
15
- #
16
- # SOLUZIONE IMPLEMENTATA:
17
- # - Creata classe SimpleLocalModel che fa da wrapper
18
- # - Implementa l'interfaccia __call__() che smolagents si aspetta
19
- # - Gestisce la conversione dei messaggi e la generazione delle risposte
20
- # - Fallback multipli: locale -> remoto -> fisso
21
- # =============================================================================
22
-
23
- from smolagents import CodeAgent, TransformersModel, InferenceClientModel, VisitWebpageTool, PythonInterpreterTool, WebSearchTool, WikipediaSearchTool, FinalAnswerTool, Tool, tool
24
- # Importazioni per modelli locali (SOLUZIONE per errore "generate"):
25
- from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
26
- from litellm import LiteLLM
27
- import threading
28
- import time
29
 
30
  # (Keep Constants as is)
31
  # --- Constants ---
@@ -48,7 +28,7 @@ class FirstAgent:
48
  ### First Agent is the first attempt to develop an agent for the course. ###
49
  def __init__(self):
50
  model_id = "HuggingFaceTB/SmolLM-135M-Instruct"
51
- model = TransformersModel(model_id=model_id)
52
 
53
  # Inizializza l'agente
54
  self.agent = CodeAgent(
@@ -244,14 +224,11 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
244
 
245
  # --- Build Gradio Interface using Blocks ---
246
  with gr.Blocks() as demo:
247
- gr.Markdown("# Basic Agent Evaluation Runner")
248
  gr.Markdown(
249
  """
250
- **Instructions:**
251
-
252
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
253
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
254
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
255
 
256
  ---
257
  **Disclaimers:**
 
5
  import inspect
6
  import pandas as pd
7
 
8
+ from smolagents import CodeAgent, TransformersModel, VisitWebpageTool, PythonInterpreterTool, WebSearchTool, WikipediaSearchTool, FinalAnswerTool, Tool, tool # InferenceClientModel, GoogleSearchTool (usa SERPAPI_API_KEY), DuckDuckGoSearchTool
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  # (Keep Constants as is)
11
  # --- Constants ---
 
28
  ### First Agent is the first attempt to develop an agent for the course. ###
29
  def __init__(self):
30
  model_id = "HuggingFaceTB/SmolLM-135M-Instruct"
31
+ model = TransformersModel(model_id=model_id, max_new_tokens=2048)
32
 
33
  # Inizializza l'agente
34
  self.agent = CodeAgent(
 
224
 
225
  # --- Build Gradio Interface using Blocks ---
226
  with gr.Blocks() as demo:
227
+ gr.Markdown("# Raffaele Agent Evaluation Runner")
228
  gr.Markdown(
229
  """
230
+ 1. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
231
+ 2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
 
 
 
232
 
233
  ---
234
  **Disclaimers:**
requirements.txt CHANGED
@@ -7,11 +7,7 @@ wikipedia-api
7
  transformers
8
  torch
9
  tokenizers
10
- # Dipendenze per LiteLLM (modelli multipli)
11
- litellm
12
- # Hugging Face Hub per download modelli e API
13
- huggingface_hub
14
- # Dipendenze per HfApiModel e integrazione completa HF
15
  datasets
16
  accelerate
17
  # Opzionali ma utili
 
7
  transformers
8
  torch
9
  tokenizers
10
+ # Dipendenze per integrazione completa con HF
 
 
 
 
11
  datasets
12
  accelerate
13
  # Opzionali ma utili