Raffaele Terribile
commited on
MOdifica applicazione per usare un modello locale
Browse files- app.py +62 -18
- requirements.txt +4 -2
app.py
CHANGED
@@ -1,10 +1,14 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
|
7 |
-
from smolagents import CodeAgent,
|
|
|
|
|
|
|
8 |
|
9 |
# (Keep Constants as is)
|
10 |
# --- Constants ---
|
@@ -35,25 +39,29 @@ class FirstAgent:
|
|
35 |
|
36 |
# Configurazione con fallback multipli
|
37 |
model = None
|
38 |
-
|
39 |
# Try 1: Modello locale via Transformers
|
40 |
try:
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
-
print("Using local
|
46 |
except Exception as e:
|
47 |
print(f"Local model failed: {e}")
|
48 |
-
|
49 |
# Try 2: Modello remoto gratuito
|
50 |
try:
|
51 |
-
model =
|
52 |
model_id="groq/mixtral-8x7b-32768" # Gratuito con registrazione
|
53 |
)
|
54 |
print("Using Groq remote model")
|
55 |
-
except Exception as
|
56 |
-
print(f"Remote model failed: {
|
57 |
raise Exception("No working model configuration found")
|
58 |
|
59 |
self.agent = CodeAgent(
|
@@ -125,19 +133,55 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
125 |
response.raise_for_status()
|
126 |
questions_data = response.json()
|
127 |
if not questions_data:
|
128 |
-
|
129 |
-
|
130 |
print(f"Fetched {len(questions_data)} questions.")
|
131 |
except requests.exceptions.RequestException as e:
|
132 |
-
print(f"Error fetching questions: {e}")
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
except requests.exceptions.JSONDecodeError as e:
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
except Exception as e:
|
139 |
print(f"An unexpected error occurred fetching questions: {e}")
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
# 3. Run your Agent
|
143 |
results_log = []
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import inspect
|
6 |
import pandas as pd
|
7 |
|
8 |
+
from smolagents import CodeAgent, InferenceClientModel, VisitWebpageTool, PythonInterpreterTool, WebSearchTool, WikipediaSearchTool, FinalAnswerTool, Tool, tool # GoogleSearchTool (usa SERPAPI_API_KEY), DuckDuckGoSearchTool
|
9 |
+
from transformers import pipeline
|
10 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
+
from litellm import LiteLLM
|
12 |
|
13 |
# (Keep Constants as is)
|
14 |
# --- Constants ---
|
|
|
39 |
|
40 |
# Configurazione con fallback multipli
|
41 |
model = None
|
42 |
+
|
43 |
# Try 1: Modello locale via Transformers
|
44 |
try:
|
45 |
+
model_id = "microsoft/DialoGPT-small"
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(model_id) # ~500MB
|
48 |
+
model = pipeline(
|
49 |
+
task="text-generation",
|
50 |
+
tokenizer=tokenizer,
|
51 |
+
model=model
|
52 |
)
|
53 |
+
print(f"Using local {model_id} model")
|
54 |
except Exception as e:
|
55 |
print(f"Local model failed: {e}")
|
56 |
+
|
57 |
# Try 2: Modello remoto gratuito
|
58 |
try:
|
59 |
+
model = LiteLLM(
|
60 |
model_id="groq/mixtral-8x7b-32768" # Gratuito con registrazione
|
61 |
)
|
62 |
print("Using Groq remote model")
|
63 |
+
except Exception as ex:
|
64 |
+
print(f"Remote model failed: {ex}")
|
65 |
raise Exception("No working model configuration found")
|
66 |
|
67 |
self.agent = CodeAgent(
|
|
|
133 |
response.raise_for_status()
|
134 |
questions_data = response.json()
|
135 |
if not questions_data:
|
136 |
+
print("Fetched questions list is empty.")
|
137 |
+
return "Fetched questions list is empty or invalid format.", None
|
138 |
print(f"Fetched {len(questions_data)} questions.")
|
139 |
except requests.exceptions.RequestException as e:
|
140 |
+
print(f"Error fetching questions from API: {e}")
|
141 |
+
print("Attempting to load questions from local file 'questions.json'...")
|
142 |
+
try:
|
143 |
+
with open("questions.json", "r", encoding="utf-8") as f:
|
144 |
+
questions_data = json.load(f)
|
145 |
+
if not questions_data:
|
146 |
+
return "Both API and local questions file are empty.", None
|
147 |
+
print(f"Successfully loaded {len(questions_data)} questions from local file.")
|
148 |
+
except FileNotFoundError:
|
149 |
+
return "Error: Could not fetch questions from API and 'questions.json' file not found.", None
|
150 |
+
except json.JSONDecodeError as json_e:
|
151 |
+
return f"Error: Could not fetch questions from API and local file has invalid JSON: {json_e}", None
|
152 |
+
except Exception as file_e:
|
153 |
+
return f"Error: Could not fetch questions from API and failed to read local file: {file_e}", None
|
154 |
except requests.exceptions.JSONDecodeError as e:
|
155 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
156 |
+
print(f"Response text: {response.text[:500]}")
|
157 |
+
print("Attempting to load questions from local file 'questions.json'...")
|
158 |
+
try:
|
159 |
+
with open("questions.json", "r", encoding="utf-8") as f:
|
160 |
+
questions_data = json.load(f)
|
161 |
+
if not questions_data:
|
162 |
+
return "Both API response is invalid and local questions file is empty.", None
|
163 |
+
print(f"Successfully loaded {len(questions_data)} questions from local file.")
|
164 |
+
except FileNotFoundError:
|
165 |
+
return "Error: Could not decode API response and 'questions.json' file not found.", None
|
166 |
+
except json.JSONDecodeError as json_e:
|
167 |
+
return f"Error: Could not decode API response and local file has invalid JSON: {json_e}", None
|
168 |
+
except Exception as file_e:
|
169 |
+
return f"Error: Could not decode API response and failed to read local file: {file_e}", None
|
170 |
except Exception as e:
|
171 |
print(f"An unexpected error occurred fetching questions: {e}")
|
172 |
+
print("Attempting to load questions from local file 'questions.json'...")
|
173 |
+
try:
|
174 |
+
with open("questions.json", "r", encoding="utf-8") as f:
|
175 |
+
questions_data = json.load(f)
|
176 |
+
if not questions_data:
|
177 |
+
return "Unexpected API error occurred and local questions file is empty.", None
|
178 |
+
print(f"Successfully loaded {len(questions_data)} questions from local file.")
|
179 |
+
except FileNotFoundError:
|
180 |
+
return "Error: Unexpected API error occurred and 'questions.json' file not found.", None
|
181 |
+
except json.JSONDecodeError as json_e:
|
182 |
+
return f"Error: Unexpected API error occurred and local file has invalid JSON: {json_e}", None
|
183 |
+
except Exception as file_e:
|
184 |
+
return f"Error: Unexpected API error occurred and failed to read local file: {file_e}", None
|
185 |
|
186 |
# 3. Run your Agent
|
187 |
results_log = []
|
requirements.txt
CHANGED
@@ -9,9 +9,11 @@ torch
|
|
9 |
tokenizers
|
10 |
# Dipendenze per LiteLLM (modelli multipli)
|
11 |
litellm
|
12 |
-
# Hugging Face Hub per download modelli
|
13 |
huggingface_hub
|
|
|
|
|
|
|
14 |
# Opzionali ma utili
|
15 |
# duckduckgo-search
|
16 |
-
# accelerate # Per modelli più grandi
|
17 |
# bitsandbytes # Per quantizzazione
|
|
|
9 |
tokenizers
|
10 |
# Dipendenze per LiteLLM (modelli multipli)
|
11 |
litellm
|
12 |
+
# Hugging Face Hub per download modelli e API
|
13 |
huggingface_hub
|
14 |
+
# Dipendenze per HfApiModel e integrazione completa HF
|
15 |
+
datasets
|
16 |
+
accelerate
|
17 |
# Opzionali ma utili
|
18 |
# duckduckgo-search
|
|
|
19 |
# bitsandbytes # Per quantizzazione
|