File size: 3,390 Bytes
4dbcfe1
 
f475b61
4dbcfe1
 
 
2986f68
 
4dbcfe1
 
 
 
 
 
 
 
 
2986f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dbcfe1
 
f475b61
4dbcfe1
 
f475b61
4dbcfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f475b61
4dbcfe1
 
 
 
 
 
f475b61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import gradio as gr
import moviepy.editor as mp
from deep_translator import GoogleTranslator
from pydub import AudioSegment
import os
import tempfile
import torch
from transformers import WhisperProcessor, WhisperForConditionalGeneration

def extract_audio(video_path):
    video = mp.VideoFileClip(video_path)
    audio = video.audio
    audio_path = tempfile.mktemp(suffix=".wav")
    audio.write_audiofile(audio_path)
    return audio_path

def generate_subtitles(audio_path):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    processor = WhisperProcessor.from_pretrained("openai/whisper-base")
    model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to(device)

    # Load and preprocess the audio
    audio_input, _ = librosa.load(audio_path, sr=16000)
    input_features = processor(audio_input, sampling_rate=16000, return_tensors="pt").input_features.to(device)

    # Generate token ids
    predicted_ids = model.generate(input_features)

    # Decode token ids to text
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)

    # For simplicity, we're returning a single segment with the full transcription
    # In a more advanced implementation, you might want to split this into multiple segments
    return [{"start": 0, "end": len(audio_input) / 16000, "text": transcription[0]}]

def translate_subtitles(subtitles, target_language):
    translator = GoogleTranslator(source='auto', target=target_language)
    translated_subtitles = []
    for segment in subtitles:
        translated_text = translator.translate(segment["text"])
        translated_subtitles.append({
            "start": segment["start"],
            "end": segment["end"],
            "text": translated_text
        })
    return translated_subtitles

def add_subtitles_to_video(video_path, subtitles, output_path):
    video = mp.VideoFileClip(video_path)
    subtitles_clips = [
        mp.TextClip(txt=subtitle["text"], fontsize=24, color='white', bg_color='black', font='Arial')
        .set_position(('center', 'bottom'))
        .set_duration(subtitle["end"] - subtitle["start"])
        .set_start(subtitle["start"])
        for subtitle in subtitles
    ]
    final_video = mp.CompositeVideoClip([video] + subtitles_clips)
    final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")

def process_video(video_path, target_language):
    # Extract audio from video
    audio_path = extract_audio(video_path)

    # Generate subtitles using Whisper
    subtitles = generate_subtitles(audio_path)

    # Translate subtitles
    translated_subtitles = translate_subtitles(subtitles, target_language)

    # Add translated subtitles to video
    output_path = tempfile.mktemp(suffix=".mp4")
    add_subtitles_to_video(video_path, translated_subtitles, output_path)

    return output_path

def gradio_interface(video, target_language):
    output_video = process_video(video.name, target_language)
    return output_video

iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Video(label="Upload Video"),
        gr.Dropdown(choices=["es", "fr", "de", "it", "ja", "ko", "zh-CN"], label="Target Language")
    ],
    outputs=gr.Video(label="Processed Video"),
    title="Video Subtitle Translator",
    description="Upload a video, and get it back with translated subtitles!"
)

iface.launch()