|
import gradio as gr |
|
from transformers import DPTFeatureExtractor, DPTForDepthEstimation |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import open3d as o3d |
|
|
|
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg') |
|
|
|
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") |
|
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") |
|
|
|
def process_image(image): |
|
|
|
encoding = feature_extractor(image, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(**encoding) |
|
predicted_depth = outputs.predicted_depth |
|
|
|
|
|
prediction = torch.nn.functional.interpolate( |
|
predicted_depth.unsqueeze(1), |
|
size=image.size[::-1], |
|
mode="bicubic", |
|
align_corners=False, |
|
).squeeze() |
|
output = prediction.cpu().numpy() |
|
depth_image = (output * 255 / np.max(output)).astype('uint8') |
|
|
|
create_obj_2(np.array(image), depth_image) |
|
|
|
return "output.gltf" |
|
|
|
|
|
|
|
|
|
|
|
def create_obj_2(rgb_image, depth_image): |
|
depth_o3d = o3d.geometry.Image(depth_image) |
|
image_o3d = o3d.geometry.Image(rgb_image) |
|
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d) |
|
w = int(depth_image.shape[0]) |
|
h = int(depth_image.shape[1]) |
|
|
|
FOV = np.pi/4 |
|
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic() |
|
camera_intrinsic.set_intrinsics(w, h, w*0.5, h*0.5, w*0.5, h*0.5 ) |
|
|
|
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image,camera_intrinsic) |
|
print('normals') |
|
pcd.normals = o3d.utility.Vector3dVector(np.zeros((1, 3))) |
|
pcd.estimate_normals() |
|
|
|
print('run Poisson surface reconstruction') |
|
with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm: |
|
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=9) |
|
print(mesh) |
|
o3d.io.write_triangle_mesh("output.gltf",mesh,write_triangle_uvs=True) |
|
return "output.gltf" |
|
|
|
title = "Interactive demo: DPT + 3D" |
|
description = "Demo for Intel's DPT, a Dense Prediction Transformer for state-of-the-art dense prediction tasks such as semantic segmentation and depth estimation." |
|
examples =[['cats.jpg']] |
|
|
|
iface = gr.Interface(fn=process_image, |
|
inputs=gr.inputs.Image(type="pil"), |
|
outputs=gr.outputs.Image3D(label="predicted depth", clear_color=[1.0,1.0,1.0,1.0]), |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
allow_flagging="never", |
|
enable_queue=True) |
|
iface.launch(debug=True) |