Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 7 |
+
dtype = torch.float16
|
| 8 |
+
nsfw_pipe = pipeline("image-classification",
|
| 9 |
+
model= AutoModelForImageClassification.from_pretrained("carbon225/vit-base-patch16-224-hentai"),
|
| 10 |
+
feature_extractor=AutoFeatureExtractor.from_pretrained("carbon225/vit-base-patch16-224-hentai"),
|
| 11 |
+
device=device,
|
| 12 |
+
torch_dtype=dtype)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
style_pipe = pipeline("image-classification",
|
| 16 |
+
model= AutoModelForImageClassification.from_pretrained("cafeai/cafe_style"),
|
| 17 |
+
feature_extractor=AutoFeatureExtractor.from_pretrained("cafeai/cafe_style"),
|
| 18 |
+
device=device,
|
| 19 |
+
torch_dtype=dtype)
|
| 20 |
+
|
| 21 |
+
aesthetic_pipe = pipeline("image-classification",
|
| 22 |
+
model= AutoModelForImageClassification.from_pretrained("cafeai/cafe_aesthetic"),
|
| 23 |
+
feature_extractor=AutoFeatureExtractor.from_pretrained("cafeai/cafe_aesthetic"),
|
| 24 |
+
device=device,
|
| 25 |
+
torch_dtype=dtype)
|
| 26 |
+
|
| 27 |
+
def predict(image, files=None):
|
| 28 |
+
print(image, files)
|
| 29 |
+
images_paths = [image]
|
| 30 |
+
if not files == None:
|
| 31 |
+
images_paths = list(map(lambda x: x.name, files))
|
| 32 |
+
pil_images = [Image.open(image_path).convert("RGB") for image_path in images_paths]
|
| 33 |
+
|
| 34 |
+
style = style_pipe(pil_images)
|
| 35 |
+
aesthetic = aesthetic_pipe(pil_images)
|
| 36 |
+
nsfw = nsfw_pipe(pil_images)
|
| 37 |
+
results = [ a + b + c for (a,b,c) in zip(style, aesthetic, nsfw)]
|
| 38 |
+
|
| 39 |
+
label_data = [{ row["label"]:row["score"] for row in image } for image in results]
|
| 40 |
+
|
| 41 |
+
return label_data[0], label_data
|
| 42 |
+
|
| 43 |
+
with gr.Blocks() as blocks:
|
| 44 |
+
with gr.Row():
|
| 45 |
+
with gr.Column():
|
| 46 |
+
image = gr.Image(label="Image to test", type="filepath")
|
| 47 |
+
files = gr.File(label="Multipls Images", file_types=["image"], file_count="multiple")
|
| 48 |
+
with gr.Column():
|
| 49 |
+
label = gr.Label(label="style")
|
| 50 |
+
results = gr.JSON(label="Results")
|
| 51 |
+
# gallery = gr.Gallery().style(grid=[2], height="auto")
|
| 52 |
+
btn = gr.Button("Run")
|
| 53 |
+
|
| 54 |
+
btn.click(fn=predict, inputs=[image, files], outputs=[label, results], api_name="inference")
|
| 55 |
+
|
| 56 |
+
blocks.queue()
|
| 57 |
+
blocks.launch(debug=True,inline=True)
|