import torch from optimum.quanto import freeze, qfloat8, quantize from transformers.modeling_utils import PreTrainedModel from diffusers import ( FlowMatchEulerDiscreteScheduler, AutoencoderKL, AutoencoderTiny, FluxImg2ImgPipeline, FluxPipeline, ) from diffusers import ( FluxImg2ImgPipeline, FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig, ) try: import intel_extension_for_pytorch as ipex # type: ignore except: pass import psutil from config import Args from pydantic import BaseModel, Field from PIL import Image from pathlib import Path import math import gc # model_path = "black-forest-labs/FLUX.1-dev" model_path = "black-forest-labs/FLUX.1-schnell" base_model_path = "black-forest-labs/FLUX.1-schnell" taesd_path = "madebyollin/taef1" subfolder = "transformer" transformer_path = model_path models_path = Path("models") default_prompt = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux" default_negative_prompt = "blurry, low quality, render, 3D, oversaturated" page_content = """

Real-Time FLUX

""" def flush(): torch.cuda.empty_cache() gc.collect() class Pipeline: class Info(BaseModel): name: str = "img2img" title: str = "Image-to-Image SDXL" description: str = "Generates an image from a text prompt" input_mode: str = "image" page_content: str = page_content class InputParams(BaseModel): prompt: str = Field( default_prompt, title="Prompt", field="textarea", id="prompt", ) seed: int = Field( 2159232, min=0, title="Seed", field="seed", hide=True, id="seed" ) steps: int = Field( 1, min=1, max=15, title="Steps", field="range", hide=True, id="steps" ) width: int = Field( 256, min=2, max=15, title="Width", disabled=True, hide=True, id="width" ) height: int = Field( 256, min=2, max=15, title="Height", disabled=True, hide=True, id="height" ) strength: float = Field( 0.5, min=0.25, max=1.0, step=0.001, title="Strength", field="range", hide=True, id="strength", ) guidance: float = Field( 3.5, min=0, max=20, step=0.001, title="Guidance", hide=True, field="range", id="guidance", ) def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): # ckpt_path = ( # "https://huggingface.co/city96/FLUX.1-dev-gguf/blob/main/flux1-dev-Q2_K.gguf" # ) print("Loading model") # ckpt_path: str = "https://huggingface.co/city96/FLUX.1-schnell-gguf/blob/main/flux1-schnell-Q6_K.gguf" ckpt_path: str = "https://huggingface.co/city96/FLUX.1-schnell-gguf/blob/main/flux1-schnell-Q4_K_S.gguf" transformer = FluxTransformer2DModel.from_single_file( ckpt_path, quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16), torch_dtype=torch.bfloat16, ) # else: pipe = FluxImg2ImgPipeline.from_pretrained( # "black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-Schnell", transformer=transformer, torch_dtype=torch.bfloat16, ) if args.taesd: pipe.vae = AutoencoderTiny.from_pretrained( taesd_path, torch_dtype=torch.bfloat16, use_safetensors=True ) # pipe.enable_model_cpu_offload() pipe = pipe.to(device) # pipe.enable_model_cpu_offload() self.pipe = pipe self.pipe.set_progress_bar_config(disable=True) # vae = AutoencoderKL.from_pretrained( # base_model_path, subfolder="vae", torch_dtype=torch_dtype # ) def predict(self, params: "Pipeline.InputParams") -> Image.Image: generator = torch.manual_seed(params.seed) steps = params.steps strength = params.strength prompt = params.prompt guidance = params.guidance results = self.pipe( image=params.image, prompt=prompt, generator=generator, strength=strength, num_inference_steps=steps, guidance_scale=guidance, width=params.width, height=params.height, ) return results.images[0]