Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	better default values
Browse files- pipelines/controlnet.py +18 -12
    	
        pipelines/controlnet.py
    CHANGED
    
    | @@ -69,18 +69,18 @@ class Pipeline: | |
| 69 | 
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         | 
| 70 | 
             
                    )
         | 
| 71 | 
             
                    steps: int = Field(
         | 
| 72 | 
            -
                         | 
| 73 | 
             
                    )
         | 
| 74 | 
             
                    width: int = Field(
         | 
| 75 | 
            -
                         | 
| 76 | 
             
                    )
         | 
| 77 | 
             
                    height: int = Field(
         | 
| 78 | 
            -
                         | 
| 79 | 
             
                    )
         | 
| 80 | 
             
                    guidance_scale: float = Field(
         | 
| 81 | 
            -
                        0. | 
| 82 | 
             
                        min=0,
         | 
| 83 | 
            -
                        max= | 
| 84 | 
             
                        step=0.001,
         | 
| 85 | 
             
                        title="Guidance Scale",
         | 
| 86 | 
             
                        field="range",
         | 
| @@ -196,16 +196,21 @@ class Pipeline: | |
| 196 | 
             
                            image=[Image.new("RGB", (768, 768))],
         | 
| 197 | 
             
                            control_image=[Image.new("RGB", (768, 768))],
         | 
| 198 | 
             
                        )
         | 
| 199 | 
            -
             | 
| 200 | 
            -
             | 
| 201 | 
            -
             | 
| 202 | 
            -
             | 
| 203 | 
            -
             | 
| 204 | 
            -
             | 
| 205 |  | 
| 206 | 
             
                def predict(self, params: "Pipeline.InputParams") -> Image.Image:
         | 
| 207 | 
             
                    generator = torch.manual_seed(params.seed)
         | 
| 208 | 
            -
                    prompt_embeds =  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 209 | 
             
                    control_image = self.canny_torch(
         | 
| 210 | 
             
                        params.image, params.canny_low_threshold, params.canny_high_threshold
         | 
| 211 | 
             
                    )
         | 
| @@ -218,6 +223,7 @@ class Pipeline: | |
| 218 | 
             
                        image=params.image,
         | 
| 219 | 
             
                        control_image=control_image,
         | 
| 220 | 
             
                        prompt_embeds=prompt_embeds,
         | 
|  | |
| 221 | 
             
                        generator=generator,
         | 
| 222 | 
             
                        strength=strength,
         | 
| 223 | 
             
                        num_inference_steps=steps,
         | 
|  | |
| 69 | 
             
                        2159232, min=0, title="Seed", field="seed", hide=True, id="seed"
         | 
| 70 | 
             
                    )
         | 
| 71 | 
             
                    steps: int = Field(
         | 
| 72 | 
            +
                        2, min=1, max=6, title="Steps", field="range", hide=True, id="steps"
         | 
| 73 | 
             
                    )
         | 
| 74 | 
             
                    width: int = Field(
         | 
| 75 | 
            +
                        512, min=2, max=15, title="Width", disabled=True, hide=True, id="width"
         | 
| 76 | 
             
                    )
         | 
| 77 | 
             
                    height: int = Field(
         | 
| 78 | 
            +
                        512, min=2, max=15, title="Height", disabled=True, hide=True, id="height"
         | 
| 79 | 
             
                    )
         | 
| 80 | 
             
                    guidance_scale: float = Field(
         | 
| 81 | 
            +
                        0.0,
         | 
| 82 | 
             
                        min=0,
         | 
| 83 | 
            +
                        max=2,
         | 
| 84 | 
             
                        step=0.001,
         | 
| 85 | 
             
                        title="Guidance Scale",
         | 
| 86 | 
             
                        field="range",
         | 
|  | |
| 196 | 
             
                            image=[Image.new("RGB", (768, 768))],
         | 
| 197 | 
             
                            control_image=[Image.new("RGB", (768, 768))],
         | 
| 198 | 
             
                        )
         | 
| 199 | 
            +
                    if args.compel:
         | 
| 200 | 
            +
                        self.compel_proc = Compel(
         | 
| 201 | 
            +
                            tokenizer=self.pipe.tokenizer,
         | 
| 202 | 
            +
                            text_encoder=self.pipe.text_encoder,
         | 
| 203 | 
            +
                            truncate_long_prompts=False,
         | 
| 204 | 
            +
                        )
         | 
| 205 |  | 
| 206 | 
             
                def predict(self, params: "Pipeline.InputParams") -> Image.Image:
         | 
| 207 | 
             
                    generator = torch.manual_seed(params.seed)
         | 
| 208 | 
            +
                    prompt_embeds = None
         | 
| 209 | 
            +
                    control_image = None
         | 
| 210 | 
            +
                    prompt = params.prompt
         | 
| 211 | 
            +
                    if hasattr(self, "compel_proc"):
         | 
| 212 | 
            +
                        prompt_embeds = self.compel_proc(params.prompt)
         | 
| 213 | 
            +
             | 
| 214 | 
             
                    control_image = self.canny_torch(
         | 
| 215 | 
             
                        params.image, params.canny_low_threshold, params.canny_high_threshold
         | 
| 216 | 
             
                    )
         | 
|  | |
| 223 | 
             
                        image=params.image,
         | 
| 224 | 
             
                        control_image=control_image,
         | 
| 225 | 
             
                        prompt_embeds=prompt_embeds,
         | 
| 226 | 
            +
                        prompt=prompt,
         | 
| 227 | 
             
                        generator=generator,
         | 
| 228 | 
             
                        strength=strength,
         | 
| 229 | 
             
                        num_inference_steps=steps,
         | 
