radames's picture
simplify type annotations and remove unused TypeVars
2ab3299
raw
history blame
9.37 kB
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi import Request
import markdown2
from pipelines.utils.safety_checker import SafetyChecker
from PIL import Image
import logging
from config import config, Args
from connection_manager import ConnectionManager, ServerFullException
import uuid
from uuid import UUID
import time
from typing import Any, Protocol, runtime_checkable
from util import pil_to_frame, bytes_to_pil, is_firefox, get_pipeline_class, ParamsModel
from device import device, torch_dtype
import asyncio
import os
import time
import torch
from pydantic import BaseModel, create_model
@runtime_checkable
class BasePipeline(Protocol):
class Info:
@classmethod
def schema(cls) -> dict[str, Any]:
...
page_content: str | None
input_mode: str
class InputParams(ParamsModel):
@classmethod
def schema(cls) -> dict[str, Any]:
...
def dict(self) -> dict[str, Any]:
...
def predict(self, params: ParamsModel) -> Image.Image | None:
...
THROTTLE = 1.0 / 120
class App:
def __init__(self, config: Args, pipeline_instance: BasePipeline):
self.args = config
self.pipeline = pipeline_instance
self.app = FastAPI()
self.conn_manager = ConnectionManager()
self.safety_checker: SafetyChecker | None = None
if self.args.safety_checker:
self.safety_checker = SafetyChecker(device=device.type)
self.init_app()
def init_app(self) -> None:
self.app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@self.app.websocket("/api/ws/{user_id}")
async def websocket_endpoint(user_id: UUID, websocket: WebSocket) -> None:
try:
await self.conn_manager.connect(
user_id, websocket, self.args.max_queue_size
)
await handle_websocket_data(user_id)
except ServerFullException as e:
logging.error(f"Server Full: {e}")
finally:
await self.conn_manager.disconnect(user_id)
logging.info(f"User disconnected: {user_id}")
async def handle_websocket_data(user_id: UUID) -> None:
if not self.conn_manager.check_user(user_id):
raise HTTPException(status_code=404, detail="User not found")
last_time = time.time()
try:
while True:
if (
self.args.timeout > 0
and time.time() - last_time > self.args.timeout
):
await self.conn_manager.send_json(
user_id,
{
"status": "timeout",
"message": "Your session has ended",
},
)
await self.conn_manager.disconnect(user_id)
return
data = await self.conn_manager.receive_json(user_id)
if data is None:
continue
if data["status"] == "next_frame":
info = self.pipeline.Info()
params_data = await self.conn_manager.receive_json(user_id)
if params_data is None:
continue
params = self.pipeline.InputParams.model_validate(params_data)
if info.input_mode == "image":
image_data = await self.conn_manager.receive_bytes(user_id)
if image_data is None or len(image_data) == 0:
await self.conn_manager.send_json(
user_id, {"status": "send_frame"}
)
continue
# Create a new Pydantic model with the image field
params_dict = params.model_dump()
params_dict["image"] = bytes_to_pil(image_data)
params = self.pipeline.InputParams.model_validate(params_dict)
await self.conn_manager.update_data(user_id, params)
await self.conn_manager.send_json(user_id, {"status": "wait"})
except Exception as e:
logging.error(f"Websocket Error: {e}, {user_id} ")
await self.conn_manager.disconnect(user_id)
@self.app.get("/api/queue")
async def get_queue_size() -> JSONResponse:
queue_size = self.conn_manager.get_user_count()
return JSONResponse({"queue_size": queue_size})
@self.app.get("/api/stream/{user_id}")
async def stream(user_id: UUID, request: Request) -> StreamingResponse:
try:
async def generate() -> bytes:
last_params: ParamsModel | None = None
while True:
last_time = time.time()
await self.conn_manager.send_json(
user_id, {"status": "send_frame"}
)
params = await self.conn_manager.get_latest_data(user_id)
if (params is None or
(last_params is not None and
params.model_dump() == last_params.model_dump())):
await asyncio.sleep(THROTTLE)
continue
last_params = params
image = self.pipeline.predict(params)
if self.args.safety_checker and self.safety_checker is not None and image is not None:
image, has_nsfw_concept = self.safety_checker(image)
if has_nsfw_concept:
image = None
if image is None:
continue
frame = pil_to_frame(image)
yield frame
# https://bugs.chromium.org/p/chromium/issues/detail?id=1250396
if not is_firefox(request.headers["user-agent"]):
yield frame
if self.args.debug:
print(f"Time taken: {time.time() - last_time}")
return StreamingResponse(
generate(),
media_type="multipart/x-mixed-replace;boundary=frame",
headers={"Cache-Control": "no-cache"},
)
except Exception as e:
logging.error(f"Streaming Error: {e}, {user_id} ")
raise HTTPException(status_code=404, detail="User not found")
# route to setup frontend
@self.app.get("/api/settings")
async def settings() -> JSONResponse:
info_schema = self.pipeline.Info.schema()
info = self.pipeline.Info()
page_content = ""
if hasattr(info, 'page_content') and info.page_content:
page_content = markdown2.markdown(info.page_content)
input_params = self.pipeline.InputParams.schema()
return JSONResponse(
{
"info": info_schema,
"input_params": input_params,
"max_queue_size": self.args.max_queue_size,
"page_content": page_content,
}
)
if not os.path.exists("public"):
os.makedirs("public")
self.app.mount(
"/", StaticFiles(directory="frontend/public", html=True), name="public"
)
# def create_app(config):
# print(f"Device: {device}")
# print(f"torch_dtype: {torch_dtype}")
# # Create pipeline once
# pipeline_class = get_pipeline_class(config.pipeline)
# pipeline_instance = pipeline_class(config, device, torch_dtype)
# # Pass the existing pipeline instance to App
# app = App(config, pipeline_instance).app
# return app
# Create app instance at module level
print(f"Device: {device}")
print(f"torch_dtype: {torch_dtype}")
pipeline_class = get_pipeline_class(config.pipeline)
pipeline_instance = pipeline_class(config, device, torch_dtype)
app = App(config, pipeline_instance).app # This creates the FastAPI app instance
if __name__ == "__main__":
import uvicorn
# app = create_app(config) # Create the app once
uvicorn.run(
app,
host=config.host,
port=config.port,
reload=config.reload,
ssl_certfile=config.ssl_certfile,
ssl_keyfile=config.ssl_keyfile,
)