File size: 23,775 Bytes
7951db8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
import os
from enum import Enum
import torch
import functools
import copy
from typing import Optional, List
from dataclasses import dataclass
import folder_paths
import comfy.model_management
import comfy.model_base
import comfy.supported_models
import comfy.supported_models_base
from comfy.model_patcher import ModelPatcher
from folder_paths import get_folder_paths
from comfy.utils import load_torch_file
from comfy_extras.nodes_compositing import JoinImageWithAlpha
from comfy.conds import CONDRegular
from .lib_layerdiffusion.utils import (
load_file_from_url,
to_lora_patch_dict,
)
from .lib_layerdiffusion.models import TransparentVAEDecoder
from .lib_layerdiffusion.attention_sharing import AttentionSharingPatcher
from .lib_layerdiffusion.enums import StableDiffusionVersion
if "layer_model" in folder_paths.folder_names_and_paths:
layer_model_root = get_folder_paths("layer_model")[0]
else:
layer_model_root = os.path.join(folder_paths.models_dir, "layer_model")
load_layer_model_state_dict = load_torch_file
# ------------ Start patching ComfyUI ------------
def calculate_weight_adjust_channel(func):
"""Patches ComfyUI's LoRA weight application to accept multi-channel inputs."""
@functools.wraps(func)
def calculate_weight(
self: ModelPatcher, patches, weight: torch.Tensor, key: str
) -> torch.Tensor:
weight = func(self, patches, weight, key)
for p in patches:
alpha = p[0]
v = p[1]
# The recursion call should be handled in the main func call.
if isinstance(v, list):
continue
if len(v) == 1:
patch_type = "diff"
elif len(v) == 2:
patch_type = v[0]
v = v[1]
if patch_type == "diff":
w1 = v[0]
if all(
(
alpha != 0.0,
w1.shape != weight.shape,
w1.ndim == weight.ndim == 4,
)
):
new_shape = [max(n, m) for n, m in zip(weight.shape, w1.shape)]
print(
f"Merged with {key} channel changed from {weight.shape} to {new_shape}"
)
new_diff = alpha * comfy.model_management.cast_to_device(
w1, weight.device, weight.dtype
)
new_weight = torch.zeros(size=new_shape).to(weight)
new_weight[
: weight.shape[0],
: weight.shape[1],
: weight.shape[2],
: weight.shape[3],
] = weight
new_weight[
: new_diff.shape[0],
: new_diff.shape[1],
: new_diff.shape[2],
: new_diff.shape[3],
] += new_diff
new_weight = new_weight.contiguous().clone()
weight = new_weight
return weight
return calculate_weight
ModelPatcher.calculate_weight = calculate_weight_adjust_channel(
ModelPatcher.calculate_weight
)
# ------------ End patching ComfyUI ------------
class LayeredDiffusionDecode:
"""
Decode alpha channel value from pixel value.
[B, C=3, H, W] => [B, C=4, H, W]
Outputs RGB image + Alpha mask.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"samples": ("LATENT",),
"images": ("IMAGE",),
"sd_version": (
[
StableDiffusionVersion.SD1x.value,
StableDiffusionVersion.SDXL.value,
],
{
"default": StableDiffusionVersion.SDXL.value,
},
),
"sub_batch_size": (
"INT",
{"default": 16, "min": 1, "max": 4096, "step": 1},
),
},
}
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "decode"
CATEGORY = "layer_diffuse"
def __init__(self) -> None:
self.vae_transparent_decoder = {}
def decode(self, samples, images, sd_version: str, sub_batch_size: int):
"""
sub_batch_size: How many images to decode in a single pass.
See https://github.com/huchenlei/ComfyUI-layerdiffuse/pull/4 for more
context.
"""
sd_version = StableDiffusionVersion(sd_version)
if sd_version == StableDiffusionVersion.SD1x:
url = "https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_sd15_vae_transparent_decoder.safetensors"
file_name = "layer_sd15_vae_transparent_decoder.safetensors"
elif sd_version == StableDiffusionVersion.SDXL:
url = "https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/vae_transparent_decoder.safetensors"
file_name = "vae_transparent_decoder.safetensors"
if not self.vae_transparent_decoder.get(sd_version):
model_path = load_file_from_url(
url=url, model_dir=layer_model_root, file_name=file_name
)
self.vae_transparent_decoder[sd_version] = TransparentVAEDecoder(
load_torch_file(model_path),
device=comfy.model_management.get_torch_device(),
dtype=(
torch.float16
if comfy.model_management.should_use_fp16()
else torch.float32
),
)
pixel = images.movedim(-1, 1) # [B, H, W, C] => [B, C, H, W]
# Decoder requires dimension to be 64-aligned.
B, C, H, W = pixel.shape
assert H % 64 == 0, f"Height({H}) is not multiple of 64."
assert W % 64 == 0, f"Height({W}) is not multiple of 64."
decoded = []
for start_idx in range(0, samples["samples"].shape[0], sub_batch_size):
decoded.append(
self.vae_transparent_decoder[sd_version].decode_pixel(
pixel[start_idx : start_idx + sub_batch_size],
samples["samples"][start_idx : start_idx + sub_batch_size],
)
)
pixel_with_alpha = torch.cat(decoded, dim=0)
# [B, C, H, W] => [B, H, W, C]
pixel_with_alpha = pixel_with_alpha.movedim(1, -1)
image = pixel_with_alpha[..., 1:]
alpha = pixel_with_alpha[..., 0]
return (image, alpha)
class LayeredDiffusionDecodeRGBA(LayeredDiffusionDecode):
"""
Decode alpha channel value from pixel value.
[B, C=3, H, W] => [B, C=4, H, W]
Outputs RGBA image.
"""
RETURN_TYPES = ("IMAGE",)
def decode(self, samples, images, sd_version: str, sub_batch_size: int):
image, mask = super().decode(samples, images, sd_version, sub_batch_size)
alpha = 1.0 - mask
return JoinImageWithAlpha().join_image_with_alpha(image, alpha)
class LayeredDiffusionDecodeSplit(LayeredDiffusionDecodeRGBA):
"""Decode RGBA every N images."""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"samples": ("LATENT",),
"images": ("IMAGE",),
# Do RGBA decode every N output images.
"frames": (
"INT",
{"default": 2, "min": 2, "max": s.MAX_FRAMES, "step": 1},
),
"sd_version": (
[
StableDiffusionVersion.SD1x.value,
StableDiffusionVersion.SDXL.value,
],
{
"default": StableDiffusionVersion.SDXL.value,
},
),
"sub_batch_size": (
"INT",
{"default": 16, "min": 1, "max": 4096, "step": 1},
),
},
}
MAX_FRAMES = 3
RETURN_TYPES = ("IMAGE",) * MAX_FRAMES
def decode(
self,
samples,
images: torch.Tensor,
frames: int,
sd_version: str,
sub_batch_size: int,
):
sliced_samples = copy.copy(samples)
sliced_samples["samples"] = sliced_samples["samples"][::frames]
return tuple(
(
(
super(LayeredDiffusionDecodeSplit, self).decode(
sliced_samples, imgs, sd_version, sub_batch_size
)[0]
if i == 0
else imgs
)
for i in range(frames)
for imgs in (images[i::frames],)
)
) + (None,) * (self.MAX_FRAMES - frames)
class LayerMethod(Enum):
ATTN = "Attention Injection"
CONV = "Conv Injection"
class LayerType(Enum):
FG = "Foreground"
BG = "Background"
@dataclass
class LayeredDiffusionBase:
model_file_name: str
model_url: str
sd_version: StableDiffusionVersion
attn_sharing: bool = False
injection_method: Optional[LayerMethod] = None
cond_type: Optional[LayerType] = None
# Number of output images per run.
frames: int = 1
@property
def config_string(self) -> str:
injection_method = self.injection_method.value if self.injection_method else ""
cond_type = self.cond_type.value if self.cond_type else ""
attn_sharing = "attn_sharing" if self.attn_sharing else ""
frames = f"Batch size ({self.frames}N)" if self.frames != 1 else ""
return ", ".join(
x
for x in (
self.sd_version.value,
injection_method,
cond_type,
attn_sharing,
frames,
)
if x
)
def apply_c_concat(self, cond, uncond, c_concat):
"""Set foreground/background concat condition."""
def write_c_concat(cond):
new_cond = []
for t in cond:
n = [t[0], t[1].copy()]
if "model_conds" not in n[1]:
n[1]["model_conds"] = {}
n[1]["model_conds"]["c_concat"] = CONDRegular(c_concat)
new_cond.append(n)
return new_cond
return (write_c_concat(cond), write_c_concat(uncond))
def apply_layered_diffusion(
self,
model: ModelPatcher,
weight: float,
):
"""Patch model"""
model_path = load_file_from_url(
url=self.model_url,
model_dir=layer_model_root,
file_name=self.model_file_name,
)
layer_lora_state_dict = load_layer_model_state_dict(model_path)
layer_lora_patch_dict = to_lora_patch_dict(layer_lora_state_dict)
work_model = model.clone()
work_model.add_patches(layer_lora_patch_dict, weight)
return (work_model,)
def apply_layered_diffusion_attn_sharing(
self,
model: ModelPatcher,
control_img: Optional[torch.TensorType] = None,
):
"""Patch model with attn sharing"""
model_path = load_file_from_url(
url=self.model_url,
model_dir=layer_model_root,
file_name=self.model_file_name,
)
layer_lora_state_dict = load_layer_model_state_dict(model_path)
work_model = model.clone()
patcher = AttentionSharingPatcher(
work_model, self.frames, use_control=control_img is not None
)
patcher.load_state_dict(layer_lora_state_dict, strict=True)
if control_img is not None:
patcher.set_control(control_img)
return (work_model,)
def get_model_sd_version(model: ModelPatcher) -> StableDiffusionVersion:
"""Get model's StableDiffusionVersion."""
base: comfy.model_base.BaseModel = model.model
model_config: comfy.supported_models.supported_models_base.BASE = base.model_config
if isinstance(model_config, comfy.supported_models.SDXL):
return StableDiffusionVersion.SDXL
elif isinstance(
model_config, (comfy.supported_models.SD15, comfy.supported_models.SD20)
):
# SD15 and SD20 are compatible with each other.
return StableDiffusionVersion.SD1x
else:
raise Exception(f"Unsupported SD Version: {type(model_config)}.")
class LayeredDiffusionFG:
"""Generate foreground with transparent background."""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"config": ([c.config_string for c in s.MODELS],),
"weight": (
"FLOAT",
{"default": 1.0, "min": -1, "max": 3, "step": 0.05},
),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_layered_diffusion"
CATEGORY = "layer_diffuse"
MODELS = (
LayeredDiffusionBase(
model_file_name="layer_xl_transparent_attn.safetensors",
model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_transparent_attn.safetensors",
sd_version=StableDiffusionVersion.SDXL,
injection_method=LayerMethod.ATTN,
),
LayeredDiffusionBase(
model_file_name="layer_xl_transparent_conv.safetensors",
model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_transparent_conv.safetensors",
sd_version=StableDiffusionVersion.SDXL,
injection_method=LayerMethod.CONV,
),
LayeredDiffusionBase(
model_file_name="layer_sd15_transparent_attn.safetensors",
model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_sd15_transparent_attn.safetensors",
sd_version=StableDiffusionVersion.SD1x,
injection_method=LayerMethod.ATTN,
attn_sharing=True,
),
)
def apply_layered_diffusion(
self,
model: ModelPatcher,
config: str,
weight: float,
):
ld_model = [m for m in self.MODELS if m.config_string == config][0]
assert get_model_sd_version(model) == ld_model.sd_version
if ld_model.attn_sharing:
return ld_model.apply_layered_diffusion_attn_sharing(model)
else:
return ld_model.apply_layered_diffusion(model, weight)
class LayeredDiffusionJoint:
"""Generate FG + BG + Blended in one inference batch. Batch size = 3N."""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"config": ([c.config_string for c in s.MODELS],),
},
"optional": {
"fg_cond": ("CONDITIONING",),
"bg_cond": ("CONDITIONING",),
"blended_cond": ("CONDITIONING",),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_layered_diffusion"
CATEGORY = "layer_diffuse"
MODELS = (
LayeredDiffusionBase(
model_file_name="layer_sd15_joint.safetensors",
model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_sd15_joint.safetensors",
sd_version=StableDiffusionVersion.SD1x,
attn_sharing=True,
frames=3,
),
)
def apply_layered_diffusion(
self,
model: ModelPatcher,
config: str,
fg_cond: Optional[List[List[torch.TensorType]]] = None,
bg_cond: Optional[List[List[torch.TensorType]]] = None,
blended_cond: Optional[List[List[torch.TensorType]]] = None,
):
ld_model = [m for m in self.MODELS if m.config_string == config][0]
assert get_model_sd_version(model) == ld_model.sd_version
assert ld_model.attn_sharing
work_model = ld_model.apply_layered_diffusion_attn_sharing(model)[0]
work_model.model_options.setdefault("transformer_options", {})
work_model.model_options["transformer_options"]["cond_overwrite"] = [
cond[0][0] if cond is not None else None
for cond in (
fg_cond,
bg_cond,
blended_cond,
)
]
return (work_model,)
class LayeredDiffusionCond:
"""Generate foreground + background given background / foreground.
- FG => Blended
- BG => Blended
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"cond": ("CONDITIONING",),
"uncond": ("CONDITIONING",),
"latent": ("LATENT",),
"config": ([c.config_string for c in s.MODELS],),
"weight": (
"FLOAT",
{"default": 1.0, "min": -1, "max": 3, "step": 0.05},
),
},
}
RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING")
FUNCTION = "apply_layered_diffusion"
CATEGORY = "layer_diffuse"
MODELS = (
LayeredDiffusionBase(
model_file_name="layer_xl_fg2ble.safetensors",
model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_fg2ble.safetensors",
sd_version=StableDiffusionVersion.SDXL,
cond_type=LayerType.FG,
),
LayeredDiffusionBase(
model_file_name="layer_xl_bg2ble.safetensors",
model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_bg2ble.safetensors",
sd_version=StableDiffusionVersion.SDXL,
cond_type=LayerType.BG,
),
)
def apply_layered_diffusion(
self,
model: ModelPatcher,
cond,
uncond,
latent,
config: str,
weight: float,
):
ld_model = [m for m in self.MODELS if m.config_string == config][0]
assert get_model_sd_version(model) == ld_model.sd_version
c_concat = model.model.latent_format.process_in(latent["samples"])
return ld_model.apply_layered_diffusion(
model, weight
) + ld_model.apply_c_concat(cond, uncond, c_concat)
class LayeredDiffusionCondJoint:
"""Generate fg/bg + blended given fg/bg.
- FG => Blended + BG
- BG => Blended + FG
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"image": ("IMAGE",),
"config": ([c.config_string for c in s.MODELS],),
},
"optional": {
"cond": ("CONDITIONING",),
"blended_cond": ("CONDITIONING",),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_layered_diffusion"
CATEGORY = "layer_diffuse"
MODELS = (
LayeredDiffusionBase(
model_file_name="layer_sd15_fg2bg.safetensors",
model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_sd15_fg2bg.safetensors",
sd_version=StableDiffusionVersion.SD1x,
attn_sharing=True,
frames=2,
cond_type=LayerType.FG,
),
LayeredDiffusionBase(
model_file_name="layer_sd15_bg2fg.safetensors",
model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_sd15_bg2fg.safetensors",
sd_version=StableDiffusionVersion.SD1x,
attn_sharing=True,
frames=2,
cond_type=LayerType.BG,
),
)
def apply_layered_diffusion(
self,
model: ModelPatcher,
image,
config: str,
cond: Optional[List[List[torch.TensorType]]] = None,
blended_cond: Optional[List[List[torch.TensorType]]] = None,
):
ld_model = [m for m in self.MODELS if m.config_string == config][0]
assert get_model_sd_version(model) == ld_model.sd_version
assert ld_model.attn_sharing
work_model = ld_model.apply_layered_diffusion_attn_sharing(
model, control_img=image.movedim(-1, 1)
)[0]
work_model.model_options.setdefault("transformer_options", {})
work_model.model_options["transformer_options"]["cond_overwrite"] = [
cond[0][0] if cond is not None else None
for cond in (
cond,
blended_cond,
)
]
return (work_model,)
class LayeredDiffusionDiff:
"""Extract FG/BG from blended image.
- Blended + FG => BG
- Blended + BG => FG
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"cond": ("CONDITIONING",),
"uncond": ("CONDITIONING",),
"blended_latent": ("LATENT",),
"latent": ("LATENT",),
"config": ([c.config_string for c in s.MODELS],),
"weight": (
"FLOAT",
{"default": 1.0, "min": -1, "max": 3, "step": 0.05},
),
},
}
RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING")
FUNCTION = "apply_layered_diffusion"
CATEGORY = "layer_diffuse"
MODELS = (
LayeredDiffusionBase(
model_file_name="layer_xl_fgble2bg.safetensors",
model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_fgble2bg.safetensors",
sd_version=StableDiffusionVersion.SDXL,
cond_type=LayerType.FG,
),
LayeredDiffusionBase(
model_file_name="layer_xl_bgble2fg.safetensors",
model_url="https://huggingface.co/LayerDiffusion/layerdiffusion-v1/resolve/main/layer_xl_bgble2fg.safetensors",
sd_version=StableDiffusionVersion.SDXL,
cond_type=LayerType.BG,
),
)
def apply_layered_diffusion(
self,
model: ModelPatcher,
cond,
uncond,
blended_latent,
latent,
config: str,
weight: float,
):
ld_model = [m for m in self.MODELS if m.config_string == config][0]
assert get_model_sd_version(model) == ld_model.sd_version
c_concat = model.model.latent_format.process_in(
torch.cat([latent["samples"], blended_latent["samples"]], dim=1)
)
return ld_model.apply_layered_diffusion(
model, weight
) + ld_model.apply_c_concat(cond, uncond, c_concat)
NODE_CLASS_MAPPINGS = {
"LayeredDiffusionApply": LayeredDiffusionFG,
"LayeredDiffusionJointApply": LayeredDiffusionJoint,
"LayeredDiffusionCondApply": LayeredDiffusionCond,
"LayeredDiffusionCondJointApply": LayeredDiffusionCondJoint,
"LayeredDiffusionDiffApply": LayeredDiffusionDiff,
"LayeredDiffusionDecode": LayeredDiffusionDecode,
"LayeredDiffusionDecodeRGBA": LayeredDiffusionDecodeRGBA,
"LayeredDiffusionDecodeSplit": LayeredDiffusionDecodeSplit,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LayeredDiffusionApply": "Layer Diffuse Apply",
"LayeredDiffusionJointApply": "Layer Diffuse Joint Apply",
"LayeredDiffusionCondApply": "Layer Diffuse Cond Apply",
"LayeredDiffusionCondJointApply": "Layer Diffuse Cond Joint Apply",
"LayeredDiffusionDiffApply": "Layer Diffuse Diff Apply",
"LayeredDiffusionDecode": "Layer Diffuse Decode",
"LayeredDiffusionDecodeRGBA": "Layer Diffuse Decode (RGBA)",
"LayeredDiffusionDecodeSplit": "Layer Diffuse Decode (Split)",
}
|