Spaces:
Runtime error
Runtime error
new ui
Browse files- Dockerfile +3 -1
- gradio_app.py +66 -16
- llama2.mojo +230 -155
Dockerfile
CHANGED
|
@@ -64,7 +64,9 @@ USER user
|
|
| 64 |
WORKDIR $HOME/app
|
| 65 |
|
| 66 |
COPY --chown=user . $HOME/app
|
| 67 |
-
RUN wget -c
|
|
|
|
|
|
|
| 68 |
|
| 69 |
# CMD ["mojo", "llama2.mojo"]
|
| 70 |
CMD ["python3", "gradio_app.py"]
|
|
|
|
| 64 |
WORKDIR $HOME/app
|
| 65 |
|
| 66 |
COPY --chown=user . $HOME/app
|
| 67 |
+
RUN wget -c https://huggingface.co/karpathy/tinyllamas/resolve/main/stories15M.bin
|
| 68 |
+
RUN wget -c https://huggingface.co/karpathy/tinyllamas/resolve/main/stories42M.bin
|
| 69 |
+
RUN wget -c https://huggingface.co/karpathy/tinyllamas/resolve/main/stories110M.bin
|
| 70 |
|
| 71 |
# CMD ["mojo", "llama2.mojo"]
|
| 72 |
CMD ["python3", "gradio_app.py"]
|
gradio_app.py
CHANGED
|
@@ -1,36 +1,86 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import subprocess
|
| 3 |
import sys
|
| 4 |
-
import
|
| 5 |
|
| 6 |
|
| 7 |
-
async def generate(prompt):
|
| 8 |
-
# os.environ["PROMPT"] = prompt
|
| 9 |
# stream stout
|
| 10 |
process = subprocess.Popen(
|
| 11 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
)
|
| 13 |
text = ""
|
| 14 |
for char in iter(lambda: process.stdout.read(1), b""):
|
| 15 |
-
char_decoded = char.decode()
|
| 16 |
-
sys.stdout.write(char_decoded)
|
| 17 |
text += char_decoded
|
| 18 |
yield text
|
| 19 |
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
fn=generate,
|
| 25 |
-
inputs=None,
|
| 26 |
-
outputs=output_text,
|
| 27 |
-
description="""
|
| 28 |
# llama2.🔥
|
| 29 |
## [Mojo](https://docs.modular.com/mojo/) implementation of [llama2.c](https://github.com/karpathy/llama2.c) by [@tairov](https://github.com/tairov)
|
| 30 |
Source: https://github.com/tairov/llama2.mojo
|
| 31 |
-
"""
|
| 32 |
-
|
| 33 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
demo.queue()
|
| 36 |
demo.launch(server_name="0.0.0.0")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import subprocess
|
| 3 |
import sys
|
| 4 |
+
from pathlib import Path
|
| 5 |
|
| 6 |
|
| 7 |
+
async def generate(prompt, model_name, seed=0, temperature=0.5, num_tokens=256):
|
|
|
|
| 8 |
# stream stout
|
| 9 |
process = subprocess.Popen(
|
| 10 |
+
[
|
| 11 |
+
"mojo",
|
| 12 |
+
"llama2.mojo",
|
| 13 |
+
Path(model_name),
|
| 14 |
+
"-s",
|
| 15 |
+
str(seed),
|
| 16 |
+
"-n",
|
| 17 |
+
str(num_tokens),
|
| 18 |
+
"-t",
|
| 19 |
+
str(temperature),
|
| 20 |
+
"-i",
|
| 21 |
+
prompt,
|
| 22 |
+
],
|
| 23 |
+
stdout=subprocess.PIPE,
|
| 24 |
+
stderr=subprocess.PIPE,
|
| 25 |
)
|
| 26 |
text = ""
|
| 27 |
for char in iter(lambda: process.stdout.read(1), b""):
|
| 28 |
+
char_decoded = char.decode("utf-8", errors="ignore")
|
|
|
|
| 29 |
text += char_decoded
|
| 30 |
yield text
|
| 31 |
|
| 32 |
|
| 33 |
+
with gr.Blocks() as demo:
|
| 34 |
+
gr.Markdown(
|
| 35 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
# llama2.🔥
|
| 37 |
## [Mojo](https://docs.modular.com/mojo/) implementation of [llama2.c](https://github.com/karpathy/llama2.c) by [@tairov](https://github.com/tairov)
|
| 38 |
Source: https://github.com/tairov/llama2.mojo
|
| 39 |
+
"""
|
| 40 |
+
)
|
| 41 |
+
with gr.Row():
|
| 42 |
+
with gr.Column():
|
| 43 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Add your prompt here...")
|
| 44 |
+
seed = gr.Slider(
|
| 45 |
+
minimum=0,
|
| 46 |
+
maximum=2**53,
|
| 47 |
+
value=0,
|
| 48 |
+
step=1,
|
| 49 |
+
label="Seed",
|
| 50 |
+
randomize=True,
|
| 51 |
+
)
|
| 52 |
+
temperature = gr.Slider(
|
| 53 |
+
minimum=0.0, maximum=2.0, step=0.01, value=0.5, label="Temperature"
|
| 54 |
+
)
|
| 55 |
+
num_tokens = gr.Slider(
|
| 56 |
+
minimum=1, maximum=256, value=256, label="Number of tokens"
|
| 57 |
+
)
|
| 58 |
+
model_name = gr.Dropdown(
|
| 59 |
+
["stories15M.bin", "stories42M.bin", "stories110M.bin"],
|
| 60 |
+
value="stories15M.bin",
|
| 61 |
+
label="Model Size",
|
| 62 |
+
)
|
| 63 |
+
with gr.Row():
|
| 64 |
+
stop = gr.Button("Stop")
|
| 65 |
+
run = gr.Button("Run")
|
| 66 |
+
with gr.Column(scale=2):
|
| 67 |
+
output_text = gr.Textbox(label="Generated Text")
|
| 68 |
+
|
| 69 |
+
# update maximum number of tokens based on model size
|
| 70 |
+
model_name.change(
|
| 71 |
+
lambda x: gr.update(maximum=1024)
|
| 72 |
+
if x == "stories110M.bin" or x == "stories42M.bin"
|
| 73 |
+
else gr.update(maximum=256),
|
| 74 |
+
model_name,
|
| 75 |
+
num_tokens,
|
| 76 |
+
queue=False,
|
| 77 |
+
)
|
| 78 |
+
click_event = run.click(
|
| 79 |
+
fn=generate,
|
| 80 |
+
inputs=[prompt, model_name, seed, temperature, num_tokens],
|
| 81 |
+
outputs=output_text,
|
| 82 |
+
)
|
| 83 |
+
stop.click(fn=None, inputs=None, outputs=None, cancels=[click_event])
|
| 84 |
|
| 85 |
demo.queue()
|
| 86 |
demo.launch(server_name="0.0.0.0")
|
llama2.mojo
CHANGED
|
@@ -1,25 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from math import round
|
| 2 |
-
import math
|
| 3 |
-
|
| 4 |
from memory import memset_zero, memcpy
|
|
|
|
| 5 |
from memory.unsafe import DTypePointer
|
|
|
|
| 6 |
from random import rand
|
| 7 |
-
from sys.info import simdwidthof
|
| 8 |
-
from builtin import string
|
| 9 |
-
import time
|
| 10 |
-
import random
|
| 11 |
-
import os
|
| 12 |
-
|
| 13 |
-
from runtime.llcl import num_cores
|
| 14 |
-
|
| 15 |
from read import BufReader, File
|
| 16 |
-
from
|
| 17 |
-
|
| 18 |
-
from python import Python
|
| 19 |
|
| 20 |
# The SIMD vector width.
|
| 21 |
-
from
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
alias nelts = (2 * simdwidthof[DType.float32]())
|
| 25 |
|
|
@@ -29,98 +26,51 @@ alias BufferPtrFloat32 = DTypePointer[DType.float32]
|
|
| 29 |
alias PointerStrings = Pointer[PointerString]
|
| 30 |
|
| 31 |
|
| 32 |
-
struct Matrix3:
|
| 33 |
-
var data: BufferPtrFloat32
|
| 34 |
-
var rows: Int
|
| 35 |
-
var cols: Int
|
| 36 |
-
var layers: Int
|
| 37 |
-
var allocated: Int
|
| 38 |
-
|
| 39 |
-
fn __init__(inout self, layers: Int, rows: Int, cols: Int):
|
| 40 |
-
self.data = BufferPtrFloat32.alloc(0)
|
| 41 |
-
self.rows = rows
|
| 42 |
-
self.cols = cols
|
| 43 |
-
self.layers = layers
|
| 44 |
-
self.allocated = 0
|
| 45 |
-
|
| 46 |
-
@always_inline
|
| 47 |
-
fn alloc(inout self, fill: Int = 0):
|
| 48 |
-
self.data = BufferPtrFloat32.alloc(self.size())
|
| 49 |
-
self.allocated = 1
|
| 50 |
-
if fill == 1:
|
| 51 |
-
self.zero()
|
| 52 |
-
|
| 53 |
-
@always_inline
|
| 54 |
-
fn alloc_zero(inout self):
|
| 55 |
-
self.alloc(1)
|
| 56 |
-
|
| 57 |
-
@always_inline
|
| 58 |
-
fn set_buf_ptr(inout self, ptr: BufferPtrFloat32):
|
| 59 |
-
self.data = ptr
|
| 60 |
-
|
| 61 |
-
fn __del__(owned self):
|
| 62 |
-
if self.allocated == 1:
|
| 63 |
-
self.data.free()
|
| 64 |
-
|
| 65 |
-
@always_inline
|
| 66 |
-
fn zero(inout self):
|
| 67 |
-
memset_zero(self.data, self.layers * self.rows * self.cols)
|
| 68 |
-
|
| 69 |
-
@always_inline
|
| 70 |
-
fn size(inout self) -> Int:
|
| 71 |
-
return self.layers * self.cols * self.rows
|
| 72 |
-
|
| 73 |
-
@always_inline
|
| 74 |
-
fn __getitem__(self, z: Int, y: Int, x: Int) -> Float32:
|
| 75 |
-
return self.load[1](z, y, x)
|
| 76 |
-
|
| 77 |
-
@always_inline
|
| 78 |
-
fn load[nelts: Int](self, z: Int, y: Int, x: Int) -> SIMD[DType.float32, nelts]:
|
| 79 |
-
return self.data.simd_load[nelts](z * self.layers + y * self.cols + x)
|
| 80 |
-
|
| 81 |
-
@always_inline
|
| 82 |
-
fn __setitem__(self, z: Int, y: Int, x: Int, val: Float32):
|
| 83 |
-
return self.store[1](z, y, x, val)
|
| 84 |
-
|
| 85 |
-
@always_inline
|
| 86 |
-
fn store[nelts: Int](self, z: Int, y: Int, x: Int, val: SIMD[DType.float32, nelts]):
|
| 87 |
-
self.data.simd_store[nelts](z * self.layers + y * self.cols + x, val)
|
| 88 |
-
|
| 89 |
-
|
| 90 |
struct Matrix:
|
| 91 |
var data: BufferPtrFloat32
|
| 92 |
var rows: Int
|
| 93 |
var cols: Int
|
|
|
|
| 94 |
var allocated: Int
|
| 95 |
|
| 96 |
fn __init__(inout self, rows: Int, cols: Int):
|
| 97 |
self.data = BufferPtrFloat32.alloc(0)
|
| 98 |
self.rows = rows
|
| 99 |
self.cols = cols
|
|
|
|
| 100 |
self.allocated = 0
|
| 101 |
|
| 102 |
fn __init__(inout self, cols: Int):
|
| 103 |
self.data = BufferPtrFloat32.alloc(0)
|
| 104 |
self.rows = 1
|
|
|
|
| 105 |
self.cols = cols
|
| 106 |
self.allocated = 0
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
fn __del__(owned self):
|
| 109 |
if self.allocated == 1:
|
| 110 |
self.data.free()
|
| 111 |
|
|
|
|
| 112 |
fn alloc(inout self, fill: Int = 0):
|
| 113 |
self.data = BufferPtrFloat32.alloc(self.size())
|
| 114 |
self.allocated = 1
|
| 115 |
if fill == 1:
|
| 116 |
self.zero()
|
| 117 |
|
|
|
|
| 118 |
fn alloc_zero(inout self):
|
| 119 |
self.alloc(1)
|
| 120 |
|
|
|
|
| 121 |
fn zero(inout self):
|
| 122 |
-
memset_zero(self.data, self.
|
| 123 |
|
|
|
|
| 124 |
fn set_buf_ptr(inout self, ptr: BufferPtrFloat32):
|
| 125 |
self.data = ptr
|
| 126 |
|
|
@@ -130,8 +80,9 @@ struct Matrix:
|
|
| 130 |
self.rows = rows
|
| 131 |
self.cols = cols
|
| 132 |
|
|
|
|
| 133 |
fn size(inout self) -> Int:
|
| 134 |
-
return self.cols * self.rows
|
| 135 |
|
| 136 |
@always_inline
|
| 137 |
fn __getitem__(self, y: Int, x: Int) -> Float32:
|
|
@@ -165,6 +116,22 @@ struct Matrix:
|
|
| 165 |
fn store[nelts: Int](self, x: Int, val: SIMD[DType.float32, nelts]):
|
| 166 |
self.data.simd_store[nelts](x, val)
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
fn read_val_int(inout buf: FileBuf) -> Int:
|
| 170 |
# DTypePointer[DType.ui8](buf.data).bitcast[DType.ui8]()
|
|
@@ -191,6 +158,31 @@ fn read_val_str(inout buf: FileBuf, slen: Int) -> PointerString:
|
|
| 191 |
return str
|
| 192 |
|
| 193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
struct FileBuf:
|
| 195 |
var data: BufferPtrType
|
| 196 |
var offset: Int
|
|
@@ -253,8 +245,9 @@ struct RunState:
|
|
| 253 |
var v: Matrix # value (dim,)
|
| 254 |
var att: Matrix # buffer for scores/attention values (n_heads, seq_len)
|
| 255 |
var logits: Matrix # output logits
|
| 256 |
-
var key_cache:
|
| 257 |
-
var value_cache:
|
|
|
|
| 258 |
|
| 259 |
fn __init__(inout self, config: Config):
|
| 260 |
self.x = Matrix(config.dim)
|
|
@@ -277,10 +270,11 @@ struct RunState:
|
|
| 277 |
self.att.alloc_zero()
|
| 278 |
self.logits = Matrix(config.vocab_size)
|
| 279 |
self.logits.alloc_zero()
|
| 280 |
-
self.key_cache =
|
| 281 |
self.key_cache.alloc_zero()
|
| 282 |
-
self.value_cache =
|
| 283 |
self.value_cache.alloc_zero()
|
|
|
|
| 284 |
|
| 285 |
|
| 286 |
struct TransformerWeights:
|
|
@@ -288,14 +282,14 @@ struct TransformerWeights:
|
|
| 288 |
var freq_cis_real: Matrix
|
| 289 |
var freq_cis_imag: Matrix
|
| 290 |
var rms_att_weight: Matrix
|
| 291 |
-
var wq:
|
| 292 |
-
var wk:
|
| 293 |
-
var wv:
|
| 294 |
-
var wo:
|
| 295 |
var rms_ffn_weight: Matrix
|
| 296 |
-
var w1:
|
| 297 |
-
var w3:
|
| 298 |
-
var w2:
|
| 299 |
var rms_final_weight: Matrix
|
| 300 |
var wcls: Matrix
|
| 301 |
|
|
@@ -309,23 +303,23 @@ struct TransformerWeights:
|
|
| 309 |
self.rms_att_weight.set_buf_ptr(
|
| 310 |
buf.bitcast_offset_float32(self.rms_att_weight.size())
|
| 311 |
)
|
| 312 |
-
self.wq =
|
| 313 |
self.wq.set_buf_ptr(buf.bitcast_offset_float32(self.wq.size()))
|
| 314 |
-
self.wk =
|
| 315 |
self.wk.set_buf_ptr(buf.bitcast_offset_float32(self.wk.size()))
|
| 316 |
-
self.wv =
|
| 317 |
self.wv.set_buf_ptr(buf.bitcast_offset_float32(self.wv.size()))
|
| 318 |
-
self.wo =
|
| 319 |
self.wo.set_buf_ptr(buf.bitcast_offset_float32(self.wo.size()))
|
| 320 |
self.rms_ffn_weight = Matrix(config.n_layers, config.dim)
|
| 321 |
self.rms_ffn_weight.set_buf_ptr(
|
| 322 |
buf.bitcast_offset_float32(self.rms_ffn_weight.size())
|
| 323 |
)
|
| 324 |
-
self.w1 =
|
| 325 |
self.w1.set_buf_ptr(buf.bitcast_offset_float32(self.w1.size()))
|
| 326 |
-
self.w2 =
|
| 327 |
self.w2.set_buf_ptr(buf.bitcast_offset_float32(self.w2.size()))
|
| 328 |
-
self.w3 =
|
| 329 |
self.w3.set_buf_ptr(buf.bitcast_offset_float32(self.w3.size()))
|
| 330 |
self.rms_final_weight = Matrix(config.dim)
|
| 331 |
self.rms_final_weight.set_buf_ptr(
|
|
@@ -435,22 +429,14 @@ fn softmax(inout x: BufferPtrFloat32, size: Int) -> None:
|
|
| 435 |
x.offset(i).simd_store[1](0, xi / ssum)
|
| 436 |
|
| 437 |
|
| 438 |
-
fn
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
for i in range(w.rows):
|
| 442 |
-
C[i] = 0.0
|
| 443 |
-
for j in range(w.cols):
|
| 444 |
-
C[i] += x[j] * w[i, j]
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
fn matmul_vectorized(C: Matrix, A: Matrix, B: Matrix):
|
| 448 |
-
for i in range(0, B.rows):
|
| 449 |
var tmp = SIMD[DType.float32, nelts](0)
|
| 450 |
|
| 451 |
@parameter
|
| 452 |
fn dot[_nelts: Int](j: Int):
|
| 453 |
-
if _nelts < nelts:
|
| 454 |
tmp[0] += (A.load[_nelts](j) * B.load[_nelts](i, j)).reduce_add()
|
| 455 |
else:
|
| 456 |
tmp += A.load[nelts](j) * B.load[nelts](i, j)
|
|
@@ -458,28 +444,12 @@ fn matmul_vectorized(C: Matrix, A: Matrix, B: Matrix):
|
|
| 458 |
vectorize[nelts, dot](B.cols)
|
| 459 |
C[i] = tmp.reduce_add()
|
| 460 |
|
| 461 |
-
|
| 462 |
-
@parameter
|
| 463 |
-
fn calc_row(i: Int):
|
| 464 |
-
var T = BufferPtrFloat32.alloc(nelts)
|
| 465 |
-
var Tbuf = Buffer[nelts, DType.float32](T)
|
| 466 |
-
memset_zero(T, nelts)
|
| 467 |
-
@parameter
|
| 468 |
-
fn dot[nelts: Int](j: Int):
|
| 469 |
-
T.simd_store[nelts](
|
| 470 |
-
0, T.simd_load[nelts](0) + A.load[nelts](j) * B.load[nelts](i, j)
|
| 471 |
-
)
|
| 472 |
-
|
| 473 |
-
vectorize[nelts, dot](B.cols)
|
| 474 |
-
C[i] = sum[nelts, DType.float32](Tbuf)
|
| 475 |
|
| 476 |
-
parallelize[calc_row](B.rows)
|
| 477 |
|
| 478 |
-
|
| 479 |
-
fn matmul(inout C: Matrix, A: Matrix, B: Matrix) -> None:
|
| 480 |
# B (d,n) @ A (n,) -> C (d,)
|
| 481 |
-
|
| 482 |
-
# matmul_parallelized(C, A, B)
|
| 483 |
|
| 484 |
|
| 485 |
fn transformer(
|
|
@@ -513,13 +483,13 @@ fn transformer(
|
|
| 513 |
|
| 514 |
# QKV matmuls for this position
|
| 515 |
tmpw.set_buf_ptr(weights.wq.data.offset(l * dim * dim), dim, dim)
|
| 516 |
-
matmul(state.q, state.xb, tmpw)
|
| 517 |
|
| 518 |
tmpw.set_buf_ptr(weights.wk.data.offset(l * dim * dim), dim, dim)
|
| 519 |
-
matmul(state.k, state.xb, tmpw)
|
| 520 |
|
| 521 |
tmpw.set_buf_ptr(weights.wv.data.offset(l * dim * dim), dim, dim)
|
| 522 |
-
matmul(state.v, state.xb, tmpw)
|
| 523 |
|
| 524 |
# Apply RoPE rotation to the q and k vectors for each head
|
| 525 |
for h in range(config.n_heads):
|
|
@@ -587,7 +557,7 @@ fn transformer(
|
|
| 587 |
xb.offset(i).simd_store[1](0, xbi)
|
| 588 |
# Final matrix multiplication to get the output of the attention
|
| 589 |
tmpw.set_buf_ptr(weights.wo.data.offset(l * dim * dim), dim, dim)
|
| 590 |
-
matmul(state.xb2, state.xb, tmpw)
|
| 591 |
|
| 592 |
# Residual connection back into x
|
| 593 |
accum(x, state.xb2.data, dim)
|
|
@@ -597,10 +567,10 @@ fn transformer(
|
|
| 597 |
|
| 598 |
# Calculate self.w1(x) and self.w3(x) for FFN
|
| 599 |
tmpw.set_buf_ptr(weights.w1.data.offset(l * dim * hidden_dim), hidden_dim, dim)
|
| 600 |
-
matmul(state.hb, state.xb, tmpw)
|
| 601 |
|
| 602 |
tmpw.set_buf_ptr(weights.w3.data.offset(l * dim * hidden_dim), hidden_dim, dim)
|
| 603 |
-
matmul(state.hb2, state.xb, tmpw)
|
| 604 |
|
| 605 |
# Apply SiLU activation function (silu(x) = x * sigmoid(x))
|
| 606 |
for i in range(hidden_dim):
|
|
@@ -613,7 +583,7 @@ fn transformer(
|
|
| 613 |
|
| 614 |
# Final matrix multiplication to get the output of the FFN
|
| 615 |
tmpw.set_buf_ptr(weights.w2.data.offset(l * dim * hidden_dim), dim, hidden_dim)
|
| 616 |
-
matmul(state.xb, state.hb, tmpw)
|
| 617 |
|
| 618 |
# Residual connection
|
| 619 |
accum(x, state.xb.data, dim)
|
|
@@ -623,7 +593,7 @@ fn transformer(
|
|
| 623 |
|
| 624 |
# Classifier into logits
|
| 625 |
tmpw.set_buf_ptr(weights.wcls.data, config.vocab_size, dim)
|
| 626 |
-
matmul(state.logits, state.x, tmpw)
|
| 627 |
|
| 628 |
|
| 629 |
fn argmax(v: Matrix) -> Int:
|
|
@@ -651,6 +621,59 @@ fn sample(probabilities: Matrix) -> Int:
|
|
| 651 |
return n - 1 # In case of rounding errors
|
| 652 |
|
| 653 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 654 |
fn print_str(s: PointerString):
|
| 655 |
# print all chars till null character
|
| 656 |
var p: Int = 0
|
|
@@ -664,15 +687,61 @@ fn time_in_ms() -> Int:
|
|
| 664 |
return time.now() // 1_000_000
|
| 665 |
|
| 666 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 667 |
fn main() raises:
|
| 668 |
-
print("num hardware threads: ", num_cores()
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
var steps = 256
|
| 674 |
-
|
| 675 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 676 |
random.seed(rng_seed)
|
| 677 |
var fbuf: FileBuf = FileBuf()
|
| 678 |
var tbuf: FileBuf = FileBuf()
|
|
@@ -702,39 +771,45 @@ fn main() raises:
|
|
| 702 |
# Create and initialize the application RunState
|
| 703 |
var state = RunState(config)
|
| 704 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 705 |
# Start the main loop
|
| 706 |
var start = 0 # Used to time our code, only initialized after the first iteration
|
| 707 |
var next_token = 0 # Will store the next token in the sequence
|
| 708 |
# Initialize with token 1 (=BOS), as done in Llama-2 sentencepiece tokenizer
|
| 709 |
var token = 1
|
| 710 |
-
var pos = 0 # Position in the sequence
|
| 711 |
-
# Explicitly print the initial BOS token for stylistic symmetry reasons
|
| 712 |
-
|
| 713 |
-
print("<s>")
|
| 714 |
|
|
|
|
|
|
|
| 715 |
while pos < steps:
|
| 716 |
# Forward the transformer to get logits for the next token
|
| 717 |
transformer(token, pos, config, state, weights)
|
| 718 |
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
# Greedy argmax sampling: take the token with the highest probability
|
| 722 |
-
next_token = argmax(state.logits)
|
| 723 |
else:
|
| 724 |
-
#
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 731 |
|
| 732 |
var token_str: PointerString = tok.vocab[next_token]
|
| 733 |
if token == 1 and token_str[0] == ord(" "):
|
| 734 |
token_str = token_str.offset(1)
|
| 735 |
|
| 736 |
print_str(token_str)
|
| 737 |
-
# flush?
|
| 738 |
|
| 739 |
# Advance forward
|
| 740 |
token = next_token
|
|
|
|
| 1 |
+
from algorithm import sum
|
| 2 |
+
from algorithm import vectorize, parallelize
|
| 3 |
+
from builtin import string
|
| 4 |
from math import round
|
|
|
|
|
|
|
| 5 |
from memory import memset_zero, memcpy
|
| 6 |
+
from memory.buffer import Buffer
|
| 7 |
from memory.unsafe import DTypePointer
|
| 8 |
+
from python import Python
|
| 9 |
from random import rand
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from read import BufReader, File
|
| 11 |
+
from runtime.llcl import num_cores, Runtime
|
| 12 |
+
from sys import argv
|
|
|
|
| 13 |
|
| 14 |
# The SIMD vector width.
|
| 15 |
+
from sys.info import simdwidthof
|
| 16 |
+
import math
|
| 17 |
+
import os
|
| 18 |
+
import random
|
| 19 |
+
import time
|
| 20 |
|
| 21 |
alias nelts = (2 * simdwidthof[DType.float32]())
|
| 22 |
|
|
|
|
| 26 |
alias PointerStrings = Pointer[PointerString]
|
| 27 |
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
struct Matrix:
|
| 30 |
var data: BufferPtrFloat32
|
| 31 |
var rows: Int
|
| 32 |
var cols: Int
|
| 33 |
+
var layers: Int
|
| 34 |
var allocated: Int
|
| 35 |
|
| 36 |
fn __init__(inout self, rows: Int, cols: Int):
|
| 37 |
self.data = BufferPtrFloat32.alloc(0)
|
| 38 |
self.rows = rows
|
| 39 |
self.cols = cols
|
| 40 |
+
self.layers = 1
|
| 41 |
self.allocated = 0
|
| 42 |
|
| 43 |
fn __init__(inout self, cols: Int):
|
| 44 |
self.data = BufferPtrFloat32.alloc(0)
|
| 45 |
self.rows = 1
|
| 46 |
+
self.layers = 1
|
| 47 |
self.cols = cols
|
| 48 |
self.allocated = 0
|
| 49 |
|
| 50 |
+
fn __init__(inout self, layers: Int, rows: Int, cols: Int):
|
| 51 |
+
self.__init__(rows, cols)
|
| 52 |
+
self.layers = layers
|
| 53 |
+
|
| 54 |
fn __del__(owned self):
|
| 55 |
if self.allocated == 1:
|
| 56 |
self.data.free()
|
| 57 |
|
| 58 |
+
@always_inline
|
| 59 |
fn alloc(inout self, fill: Int = 0):
|
| 60 |
self.data = BufferPtrFloat32.alloc(self.size())
|
| 61 |
self.allocated = 1
|
| 62 |
if fill == 1:
|
| 63 |
self.zero()
|
| 64 |
|
| 65 |
+
@always_inline
|
| 66 |
fn alloc_zero(inout self):
|
| 67 |
self.alloc(1)
|
| 68 |
|
| 69 |
+
@always_inline
|
| 70 |
fn zero(inout self):
|
| 71 |
+
memset_zero(self.data, self.size())
|
| 72 |
|
| 73 |
+
@always_inline
|
| 74 |
fn set_buf_ptr(inout self, ptr: BufferPtrFloat32):
|
| 75 |
self.data = ptr
|
| 76 |
|
|
|
|
| 80 |
self.rows = rows
|
| 81 |
self.cols = cols
|
| 82 |
|
| 83 |
+
@always_inline
|
| 84 |
fn size(inout self) -> Int:
|
| 85 |
+
return self.cols * self.rows * self.layers
|
| 86 |
|
| 87 |
@always_inline
|
| 88 |
fn __getitem__(self, y: Int, x: Int) -> Float32:
|
|
|
|
| 116 |
fn store[nelts: Int](self, x: Int, val: SIMD[DType.float32, nelts]):
|
| 117 |
self.data.simd_store[nelts](x, val)
|
| 118 |
|
| 119 |
+
@always_inline
|
| 120 |
+
fn __getitem__(self, z: Int, y: Int, x: Int) -> Float32:
|
| 121 |
+
return self.load[1](z, y, x)
|
| 122 |
+
|
| 123 |
+
@always_inline
|
| 124 |
+
fn load[nelts: Int](self, z: Int, y: Int, x: Int) -> SIMD[DType.float32, nelts]:
|
| 125 |
+
return self.data.simd_load[nelts](z * self.layers + y * self.cols + x)
|
| 126 |
+
|
| 127 |
+
@always_inline
|
| 128 |
+
fn __setitem__(self, z: Int, y: Int, x: Int, val: Float32):
|
| 129 |
+
return self.store[1](z, y, x, val)
|
| 130 |
+
|
| 131 |
+
@always_inline
|
| 132 |
+
fn store[nelts: Int](self, z: Int, y: Int, x: Int, val: SIMD[DType.float32, nelts]):
|
| 133 |
+
self.data.simd_store[nelts](z * self.layers + y * self.cols + x, val)
|
| 134 |
+
|
| 135 |
|
| 136 |
fn read_val_int(inout buf: FileBuf) -> Int:
|
| 137 |
# DTypePointer[DType.ui8](buf.data).bitcast[DType.ui8]()
|
|
|
|
| 158 |
return str
|
| 159 |
|
| 160 |
|
| 161 |
+
# not optimal concat
|
| 162 |
+
fn str_concat(s1: PointerString, s2: PointerString) -> PointerString:
|
| 163 |
+
var l1 = 0
|
| 164 |
+
var l2 = 0
|
| 165 |
+
|
| 166 |
+
while s1[l1] != 0:
|
| 167 |
+
l1 += 1
|
| 168 |
+
while s2[l2] != 0:
|
| 169 |
+
l2 += 1
|
| 170 |
+
|
| 171 |
+
let str = PointerString.alloc(l1 + l2)
|
| 172 |
+
memcpy[UInt8](str, s1, l1)
|
| 173 |
+
memcpy[UInt8](str.offset(l1), s2, l2)
|
| 174 |
+
str.store(l1 + l2, 0)
|
| 175 |
+
return str
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
fn str_to_ptr(s: String) -> PointerString:
|
| 179 |
+
let ret = PointerString.alloc(len(s) + 1)
|
| 180 |
+
for i in range(len(s)):
|
| 181 |
+
ret.store(i, ord(s[i]))
|
| 182 |
+
ret.store(len(s), 0)
|
| 183 |
+
return ret
|
| 184 |
+
|
| 185 |
+
|
| 186 |
struct FileBuf:
|
| 187 |
var data: BufferPtrType
|
| 188 |
var offset: Int
|
|
|
|
| 245 |
var v: Matrix # value (dim,)
|
| 246 |
var att: Matrix # buffer for scores/attention values (n_heads, seq_len)
|
| 247 |
var logits: Matrix # output logits
|
| 248 |
+
var key_cache: Matrix # (layer, seq_len, dim)
|
| 249 |
+
var value_cache: Matrix # (layer, seq_len, dim)
|
| 250 |
+
var rt: Runtime
|
| 251 |
|
| 252 |
fn __init__(inout self, config: Config):
|
| 253 |
self.x = Matrix(config.dim)
|
|
|
|
| 270 |
self.att.alloc_zero()
|
| 271 |
self.logits = Matrix(config.vocab_size)
|
| 272 |
self.logits.alloc_zero()
|
| 273 |
+
self.key_cache = Matrix(config.n_layers, config.seq_len, config.dim)
|
| 274 |
self.key_cache.alloc_zero()
|
| 275 |
+
self.value_cache = Matrix(config.n_layers, config.seq_len, config.dim)
|
| 276 |
self.value_cache.alloc_zero()
|
| 277 |
+
self.rt = Runtime(num_cores() // 2)
|
| 278 |
|
| 279 |
|
| 280 |
struct TransformerWeights:
|
|
|
|
| 282 |
var freq_cis_real: Matrix
|
| 283 |
var freq_cis_imag: Matrix
|
| 284 |
var rms_att_weight: Matrix
|
| 285 |
+
var wq: Matrix
|
| 286 |
+
var wk: Matrix
|
| 287 |
+
var wv: Matrix
|
| 288 |
+
var wo: Matrix
|
| 289 |
var rms_ffn_weight: Matrix
|
| 290 |
+
var w1: Matrix
|
| 291 |
+
var w3: Matrix
|
| 292 |
+
var w2: Matrix
|
| 293 |
var rms_final_weight: Matrix
|
| 294 |
var wcls: Matrix
|
| 295 |
|
|
|
|
| 303 |
self.rms_att_weight.set_buf_ptr(
|
| 304 |
buf.bitcast_offset_float32(self.rms_att_weight.size())
|
| 305 |
)
|
| 306 |
+
self.wq = Matrix(config.n_layers, config.dim, config.dim)
|
| 307 |
self.wq.set_buf_ptr(buf.bitcast_offset_float32(self.wq.size()))
|
| 308 |
+
self.wk = Matrix(config.n_layers, config.dim, config.dim)
|
| 309 |
self.wk.set_buf_ptr(buf.bitcast_offset_float32(self.wk.size()))
|
| 310 |
+
self.wv = Matrix(config.n_layers, config.dim, config.dim)
|
| 311 |
self.wv.set_buf_ptr(buf.bitcast_offset_float32(self.wv.size()))
|
| 312 |
+
self.wo = Matrix(config.n_layers, config.dim, config.dim)
|
| 313 |
self.wo.set_buf_ptr(buf.bitcast_offset_float32(self.wo.size()))
|
| 314 |
self.rms_ffn_weight = Matrix(config.n_layers, config.dim)
|
| 315 |
self.rms_ffn_weight.set_buf_ptr(
|
| 316 |
buf.bitcast_offset_float32(self.rms_ffn_weight.size())
|
| 317 |
)
|
| 318 |
+
self.w1 = Matrix(config.n_layers, config.dim, config.hidden_dim)
|
| 319 |
self.w1.set_buf_ptr(buf.bitcast_offset_float32(self.w1.size()))
|
| 320 |
+
self.w2 = Matrix(config.n_layers, config.dim, config.hidden_dim)
|
| 321 |
self.w2.set_buf_ptr(buf.bitcast_offset_float32(self.w2.size()))
|
| 322 |
+
self.w3 = Matrix(config.n_layers, config.dim, config.hidden_dim)
|
| 323 |
self.w3.set_buf_ptr(buf.bitcast_offset_float32(self.w3.size()))
|
| 324 |
self.rms_final_weight = Matrix(config.dim)
|
| 325 |
self.rms_final_weight.set_buf_ptr(
|
|
|
|
| 429 |
x.offset(i).simd_store[1](0, xi / ssum)
|
| 430 |
|
| 431 |
|
| 432 |
+
fn matmul_parallelized(C: Matrix, A: Matrix, B: Matrix, rt: Runtime):
|
| 433 |
+
@parameter
|
| 434 |
+
fn compute_row(i: Int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 435 |
var tmp = SIMD[DType.float32, nelts](0)
|
| 436 |
|
| 437 |
@parameter
|
| 438 |
fn dot[_nelts: Int](j: Int):
|
| 439 |
+
if _nelts < nelts: # take care of tail array elements with length < nelts
|
| 440 |
tmp[0] += (A.load[_nelts](j) * B.load[_nelts](i, j)).reduce_add()
|
| 441 |
else:
|
| 442 |
tmp += A.load[nelts](j) * B.load[nelts](i, j)
|
|
|
|
| 444 |
vectorize[nelts, dot](B.cols)
|
| 445 |
C[i] = tmp.reduce_add()
|
| 446 |
|
| 447 |
+
parallelize[compute_row](rt, B.rows, rt.parallelism_level())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
|
|
|
|
| 449 |
|
| 450 |
+
fn matmul(inout C: Matrix, A: Matrix, B: Matrix, rt: Runtime) -> None:
|
|
|
|
| 451 |
# B (d,n) @ A (n,) -> C (d,)
|
| 452 |
+
matmul_parallelized(C, A, B, rt)
|
|
|
|
| 453 |
|
| 454 |
|
| 455 |
fn transformer(
|
|
|
|
| 483 |
|
| 484 |
# QKV matmuls for this position
|
| 485 |
tmpw.set_buf_ptr(weights.wq.data.offset(l * dim * dim), dim, dim)
|
| 486 |
+
matmul(state.q, state.xb, tmpw, state.rt)
|
| 487 |
|
| 488 |
tmpw.set_buf_ptr(weights.wk.data.offset(l * dim * dim), dim, dim)
|
| 489 |
+
matmul(state.k, state.xb, tmpw, state.rt)
|
| 490 |
|
| 491 |
tmpw.set_buf_ptr(weights.wv.data.offset(l * dim * dim), dim, dim)
|
| 492 |
+
matmul(state.v, state.xb, tmpw, state.rt)
|
| 493 |
|
| 494 |
# Apply RoPE rotation to the q and k vectors for each head
|
| 495 |
for h in range(config.n_heads):
|
|
|
|
| 557 |
xb.offset(i).simd_store[1](0, xbi)
|
| 558 |
# Final matrix multiplication to get the output of the attention
|
| 559 |
tmpw.set_buf_ptr(weights.wo.data.offset(l * dim * dim), dim, dim)
|
| 560 |
+
matmul(state.xb2, state.xb, tmpw, state.rt)
|
| 561 |
|
| 562 |
# Residual connection back into x
|
| 563 |
accum(x, state.xb2.data, dim)
|
|
|
|
| 567 |
|
| 568 |
# Calculate self.w1(x) and self.w3(x) for FFN
|
| 569 |
tmpw.set_buf_ptr(weights.w1.data.offset(l * dim * hidden_dim), hidden_dim, dim)
|
| 570 |
+
matmul(state.hb, state.xb, tmpw, state.rt)
|
| 571 |
|
| 572 |
tmpw.set_buf_ptr(weights.w3.data.offset(l * dim * hidden_dim), hidden_dim, dim)
|
| 573 |
+
matmul(state.hb2, state.xb, tmpw, state.rt)
|
| 574 |
|
| 575 |
# Apply SiLU activation function (silu(x) = x * sigmoid(x))
|
| 576 |
for i in range(hidden_dim):
|
|
|
|
| 583 |
|
| 584 |
# Final matrix multiplication to get the output of the FFN
|
| 585 |
tmpw.set_buf_ptr(weights.w2.data.offset(l * dim * hidden_dim), dim, hidden_dim)
|
| 586 |
+
matmul(state.xb, state.hb, tmpw, state.rt)
|
| 587 |
|
| 588 |
# Residual connection
|
| 589 |
accum(x, state.xb.data, dim)
|
|
|
|
| 593 |
|
| 594 |
# Classifier into logits
|
| 595 |
tmpw.set_buf_ptr(weights.wcls.data, config.vocab_size, dim)
|
| 596 |
+
matmul(state.logits, state.x, tmpw, state.rt)
|
| 597 |
|
| 598 |
|
| 599 |
fn argmax(v: Matrix) -> Int:
|
|
|
|
| 621 |
return n - 1 # In case of rounding errors
|
| 622 |
|
| 623 |
|
| 624 |
+
fn str_lookup(str: PointerString, tok: Tokenizer) -> Int:
|
| 625 |
+
for pos in range(tok.vocab_size):
|
| 626 |
+
let s1 = tok.vocab[pos]
|
| 627 |
+
var p1 = 0
|
| 628 |
+
while s1[p1] != 0 and str[p1] != 0:
|
| 629 |
+
if s1[p1] != str[p1]:
|
| 630 |
+
break
|
| 631 |
+
p1 += 1
|
| 632 |
+
if s1[p1] != 0 or str[p1] != 0:
|
| 633 |
+
continue
|
| 634 |
+
return pos
|
| 635 |
+
return -1
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
fn bpe_encode(inout tokens: DynamicVector[Int], text: String, tok: Tokenizer):
|
| 639 |
+
for pos in range(len(text)):
|
| 640 |
+
let char = str_to_ptr(text[pos])
|
| 641 |
+
let id = str_lookup(char, tok)
|
| 642 |
+
|
| 643 |
+
if id == -1:
|
| 644 |
+
print("Not a good prompt token at pos ", pos)
|
| 645 |
+
return
|
| 646 |
+
tokens.push_back(id)
|
| 647 |
+
|
| 648 |
+
while True:
|
| 649 |
+
var best_score = Float32(-1e10)
|
| 650 |
+
var best_id = -1
|
| 651 |
+
var best_idx = -1
|
| 652 |
+
|
| 653 |
+
for i in range(len(tokens) - 1):
|
| 654 |
+
# Check if we can merge the pair (tokens[i], tokens[i+1])
|
| 655 |
+
let str = str_concat(tok.vocab[tokens[i]], tok.vocab[tokens[i + 1]])
|
| 656 |
+
let id = str_lookup(str, tok)
|
| 657 |
+
if id != -1 and tok.vocab_scores.load(id) > best_score:
|
| 658 |
+
best_score = tok.vocab_scores.load(id)
|
| 659 |
+
best_id = id
|
| 660 |
+
best_idx = i
|
| 661 |
+
|
| 662 |
+
if best_idx == -1:
|
| 663 |
+
# We couldn't find any more pairs to merge, so we're done
|
| 664 |
+
break
|
| 665 |
+
|
| 666 |
+
# Merge the consecutive pair (best_idx, best_idx+1) into new token best_id
|
| 667 |
+
tokens[best_idx] = best_id
|
| 668 |
+
# Delete token at position best_idx+1, shift the entire sequence back 1
|
| 669 |
+
var _tokens = DynamicVector[Int]()
|
| 670 |
+
for i in range(0, best_idx + 1):
|
| 671 |
+
_tokens.push_back(tokens[i])
|
| 672 |
+
for i in range(best_idx + 2, len(tokens)):
|
| 673 |
+
_tokens.push_back(tokens[i])
|
| 674 |
+
tokens = _tokens
|
| 675 |
+
|
| 676 |
+
|
| 677 |
fn print_str(s: PointerString):
|
| 678 |
# print all chars till null character
|
| 679 |
var p: Int = 0
|
|
|
|
| 687 |
return time.now() // 1_000_000
|
| 688 |
|
| 689 |
|
| 690 |
+
fn print_usage():
|
| 691 |
+
print("Usage: mojo llama2.mojo <checkpoint> [options]")
|
| 692 |
+
print("Example: mojo llama2.mojo stories15M.bin -s 99 -n 256 -t 0.5 -i \"Llama is an animal\"")
|
| 693 |
+
print("Options:")
|
| 694 |
+
print(" -s <int> random seed, default time.now()")
|
| 695 |
+
print(" -t <float> temperature in [0,1.0], default 1.0")
|
| 696 |
+
print(" -n <int> number of steps to run for, default 256. 0 = max_seq_len")
|
| 697 |
+
print(" -i <string> input prompt")
|
| 698 |
+
|
| 699 |
+
|
| 700 |
fn main() raises:
|
| 701 |
+
print("num hardware threads: ", num_cores())
|
| 702 |
+
print("SIMD vector width: ", nelts)
|
| 703 |
+
var tokenizer = StringRef("tokenizer.bin")
|
| 704 |
+
var checkpoint = StringRef("stories15M.bin")
|
| 705 |
+
var temperature = 0.9
|
| 706 |
var steps = 256
|
| 707 |
+
var prompt = String("")
|
| 708 |
+
var rng_seed: Int = time.now()
|
| 709 |
+
|
| 710 |
+
@parameter
|
| 711 |
+
fn argparse() raises -> Int:
|
| 712 |
+
let args = argv()
|
| 713 |
+
if len(args) < 2:
|
| 714 |
+
return 0
|
| 715 |
+
checkpoint = args[1]
|
| 716 |
+
for i in range(2, len(args), 2):
|
| 717 |
+
if args[i] == "-p":
|
| 718 |
+
print("Option not supported: ", args[i])
|
| 719 |
+
if args[i] == "-n":
|
| 720 |
+
steps = atol(args[i + 1])
|
| 721 |
+
if args[i] == "-s":
|
| 722 |
+
rng_seed = atol(args[i + 1])
|
| 723 |
+
if args[i] == "-i":
|
| 724 |
+
prompt = args[i + 1]
|
| 725 |
+
if args[i] == "-t":
|
| 726 |
+
let val = args[i + 1]
|
| 727 |
+
temperature = 0.0
|
| 728 |
+
# hacky parse float, keep only 1 digit
|
| 729 |
+
for c in range(0, len(val)):
|
| 730 |
+
if val[c] == ".":
|
| 731 |
+
temperature += atol(val[c + 1]) * 0.1
|
| 732 |
+
break
|
| 733 |
+
else:
|
| 734 |
+
temperature = atol(val[c])
|
| 735 |
+
if temperature < -1e9 or temperature > (1 + 1e9):
|
| 736 |
+
print("Wrong temperature value", temperature)
|
| 737 |
+
return 0
|
| 738 |
+
return 1
|
| 739 |
+
|
| 740 |
+
let res = argparse()
|
| 741 |
+
if res == 0:
|
| 742 |
+
print_usage()
|
| 743 |
+
return
|
| 744 |
+
|
| 745 |
random.seed(rng_seed)
|
| 746 |
var fbuf: FileBuf = FileBuf()
|
| 747 |
var tbuf: FileBuf = FileBuf()
|
|
|
|
| 771 |
# Create and initialize the application RunState
|
| 772 |
var state = RunState(config)
|
| 773 |
|
| 774 |
+
# Process the prompt, if any
|
| 775 |
+
var prompt_tokens = DynamicVector[Int]()
|
| 776 |
+
|
| 777 |
+
if prompt:
|
| 778 |
+
bpe_encode(prompt_tokens, prompt, tok)
|
| 779 |
+
|
| 780 |
# Start the main loop
|
| 781 |
var start = 0 # Used to time our code, only initialized after the first iteration
|
| 782 |
var next_token = 0 # Will store the next token in the sequence
|
| 783 |
# Initialize with token 1 (=BOS), as done in Llama-2 sentencepiece tokenizer
|
| 784 |
var token = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
| 785 |
|
| 786 |
+
# Position in the sequence
|
| 787 |
+
var pos = 0
|
| 788 |
while pos < steps:
|
| 789 |
# Forward the transformer to get logits for the next token
|
| 790 |
transformer(token, pos, config, state, weights)
|
| 791 |
|
| 792 |
+
if pos < len(prompt_tokens):
|
| 793 |
+
next_token = prompt_tokens[pos]
|
|
|
|
|
|
|
| 794 |
else:
|
| 795 |
+
# Sample the next token
|
| 796 |
+
if temperature == 0.0:
|
| 797 |
+
# Greedy argmax sampling: take the token with the highest probability
|
| 798 |
+
next_token = argmax(state.logits)
|
| 799 |
+
else:
|
| 800 |
+
# Apply the temperature to the logits
|
| 801 |
+
for q in range(config.vocab_size):
|
| 802 |
+
state.logits[q] = state.logits[q] / temperature
|
| 803 |
+
# Apply softmax to the logits to get the probabilities for the next token
|
| 804 |
+
softmax(state.logits.data, config.vocab_size)
|
| 805 |
+
# Sample from this distribution to get the next token
|
| 806 |
+
next_token = sample(state.logits)
|
| 807 |
|
| 808 |
var token_str: PointerString = tok.vocab[next_token]
|
| 809 |
if token == 1 and token_str[0] == ord(" "):
|
| 810 |
token_str = token_str.offset(1)
|
| 811 |
|
| 812 |
print_str(token_str)
|
|
|
|
| 813 |
|
| 814 |
# Advance forward
|
| 815 |
token = next_token
|