Spaces:
Running
Running
import faiss, torch, traceback, parselmouth, numpy as np, torchcrepe, torch.nn as nn, pyworld | |
from fairseq import checkpoint_utils | |
from lib.infer_pack.models import ( | |
SynthesizerTrnMs256NSFsid, | |
SynthesizerTrnMs256NSFsid_nono, | |
SynthesizerTrnMs768NSFsid, | |
SynthesizerTrnMs768NSFsid_nono, | |
) | |
import os, sys | |
from time import time as ttime | |
import torch.nn.functional as F | |
import scipy.signal as signal | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from configs.config import Config | |
from multiprocessing import Manager as M | |
mm = M() | |
config = Config() | |
class RVC: | |
def __init__( | |
self, key, pth_path, index_path, index_rate, n_cpu, inp_q, opt_q, device | |
) -> None: | |
""" | |
初始化 | |
""" | |
try: | |
global config | |
self.inp_q = inp_q | |
self.opt_q = opt_q | |
self.device = device | |
self.f0_up_key = key | |
self.time_step = 160 / 16000 * 1000 | |
self.f0_min = 50 | |
self.f0_max = 1100 | |
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) | |
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) | |
self.sr = 16000 | |
self.window = 160 | |
self.n_cpu = n_cpu | |
if index_rate != 0: | |
self.index = faiss.read_index(index_path) | |
self.big_npy = self.index.reconstruct_n(0, self.index.ntotal) | |
print("index search enabled") | |
self.index_rate = index_rate | |
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | |
["hubert_base.pt"], | |
suffix="", | |
) | |
hubert_model = models[0] | |
hubert_model = hubert_model.to(config.device) | |
if config.is_half: | |
hubert_model = hubert_model.half() | |
else: | |
hubert_model = hubert_model.float() | |
hubert_model.eval() | |
self.model = hubert_model | |
cpt = torch.load(pth_path, map_location="cpu") | |
self.tgt_sr = cpt["config"][-1] | |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] | |
self.if_f0 = cpt.get("f0", 1) | |
self.version = cpt.get("version", "v1") | |
if self.version == "v1": | |
if self.if_f0 == 1: | |
self.net_g = SynthesizerTrnMs256NSFsid( | |
*cpt["config"], is_half=config.is_half | |
) | |
else: | |
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
elif self.version == "v2": | |
if self.if_f0 == 1: | |
self.net_g = SynthesizerTrnMs768NSFsid( | |
*cpt["config"], is_half=config.is_half | |
) | |
else: | |
self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
del self.net_g.enc_q | |
print(self.net_g.load_state_dict(cpt["weight"], strict=False)) | |
self.net_g.eval().to(device) | |
if config.is_half: | |
self.net_g = self.net_g.half() | |
else: | |
self.net_g = self.net_g.float() | |
self.is_half = config.is_half | |
except: | |
print(traceback.format_exc()) | |
def get_f0_post(self, f0): | |
f0_min = self.f0_min | |
f0_max = self.f0_max | |
f0_mel_min = 1127 * np.log(1 + f0_min / 700) | |
f0_mel_max = 1127 * np.log(1 + f0_max / 700) | |
f0bak = f0.copy() | |
f0_mel = 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( | |
f0_mel_max - f0_mel_min | |
) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > 255] = 255 | |
f0_coarse = np.rint(f0_mel).astype(np.int_) | |
return f0_coarse, f0bak | |
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"): | |
n_cpu = int(n_cpu) | |
if method == "crepe": | |
return self.get_f0_crepe(x, f0_up_key) | |
if method == "rmvpe": | |
return self.get_f0_rmvpe(x, f0_up_key) | |
if method == "pm": | |
p_len = x.shape[0] // 160 | |
f0 = ( | |
parselmouth.Sound(x, 16000) | |
.to_pitch_ac( | |
time_step=0.01, | |
voicing_threshold=0.6, | |
pitch_floor=50, | |
pitch_ceiling=1100, | |
) | |
.selected_array["frequency"] | |
) | |
pad_size = (p_len - len(f0) + 1) // 2 | |
if pad_size > 0 or p_len - len(f0) - pad_size > 0: | |
print(pad_size, p_len - len(f0) - pad_size) | |
f0 = np.pad( | |
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" | |
) | |
f0 *= pow(2, f0_up_key / 12) | |
return self.get_f0_post(f0) | |
if n_cpu == 1: | |
f0, t = pyworld.harvest( | |
x.astype(np.double), | |
fs=16000, | |
f0_ceil=1100, | |
f0_floor=50, | |
frame_period=10, | |
) | |
f0 = signal.medfilt(f0, 3) | |
f0 *= pow(2, f0_up_key / 12) | |
return self.get_f0_post(f0) | |
f0bak = np.zeros(x.shape[0] // 160, dtype=np.float64) | |
length = len(x) | |
part_length = int(length / n_cpu / 160) * 160 | |
ts = ttime() | |
res_f0 = mm.dict() | |
for idx in range(n_cpu): | |
tail = part_length * (idx + 1) + 320 | |
if idx == 0: | |
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts)) | |
else: | |
self.inp_q.put( | |
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts) | |
) | |
while 1: | |
res_ts = self.opt_q.get() | |
if res_ts == ts: | |
break | |
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])] | |
for idx, f0 in enumerate(f0s): | |
if idx == 0: | |
f0 = f0[:-3] | |
elif idx != n_cpu - 1: | |
f0 = f0[2:-3] | |
else: | |
f0 = f0[2:-1] | |
f0bak[ | |
part_length * idx // 160 : part_length * idx // 160 + f0.shape[0] | |
] = f0 | |
f0bak = signal.medfilt(f0bak, 3) | |
f0bak *= pow(2, f0_up_key / 12) | |
return self.get_f0_post(f0bak) | |
def get_f0_crepe(self, x, f0_up_key): | |
audio = torch.tensor(np.copy(x))[None].float() | |
f0, pd = torchcrepe.predict( | |
audio, | |
self.sr, | |
160, | |
self.f0_min, | |
self.f0_max, | |
"full", | |
batch_size=512, | |
device=self.device, | |
return_periodicity=True, | |
) | |
pd = torchcrepe.filter.median(pd, 3) | |
f0 = torchcrepe.filter.mean(f0, 3) | |
f0[pd < 0.1] = 0 | |
f0 = f0[0].cpu().numpy() | |
f0 *= pow(2, f0_up_key / 12) | |
return self.get_f0_post(f0) | |
def get_f0_rmvpe(self, x, f0_up_key): | |
if hasattr(self, "model_rmvpe") == False: | |
from infer.lib.rmvpe import RMVPE | |
print("loading rmvpe model") | |
self.model_rmvpe = RMVPE( | |
"rmvpe.pt", is_half=self.is_half, device=self.device | |
) | |
# self.model_rmvpe = RMVPE("aug2_58000_half.pt", is_half=self.is_half, device=self.device) | |
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) | |
f0 *= pow(2, f0_up_key / 12) | |
return self.get_f0_post(f0) | |
def infer( | |
self, | |
feats: torch.Tensor, | |
indata: np.ndarray, | |
rate1, | |
rate2, | |
cache_pitch, | |
cache_pitchf, | |
f0method, | |
) -> np.ndarray: | |
feats = feats.view(1, -1) | |
if config.is_half: | |
feats = feats.half() | |
else: | |
feats = feats.float() | |
feats = feats.to(self.device) | |
t1 = ttime() | |
with torch.no_grad(): | |
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) | |
inputs = { | |
"source": feats, | |
"padding_mask": padding_mask, | |
"output_layer": 9 if self.version == "v1" else 12, | |
} | |
logits = self.model.extract_features(**inputs) | |
feats = ( | |
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0] | |
) | |
t2 = ttime() | |
try: | |
if hasattr(self, "index") and self.index_rate != 0: | |
leng_replace_head = int(rate1 * feats[0].shape[0]) | |
npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32") | |
score, ix = self.index.search(npy, k=8) | |
weight = np.square(1 / score) | |
weight /= weight.sum(axis=1, keepdims=True) | |
npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) | |
if config.is_half: | |
npy = npy.astype("float16") | |
feats[0][-leng_replace_head:] = ( | |
torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate | |
+ (1 - self.index_rate) * feats[0][-leng_replace_head:] | |
) | |
else: | |
print("index search FAIL or disabled") | |
except: | |
traceback.print_exc() | |
print("index search FAIL") | |
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) | |
t3 = ttime() | |
if self.if_f0 == 1: | |
pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method) | |
cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0] :], pitch[:-1]) | |
cache_pitchf[:] = np.append( | |
cache_pitchf[pitchf[:-1].shape[0] :], pitchf[:-1] | |
) | |
p_len = min(feats.shape[1], 13000, cache_pitch.shape[0]) | |
else: | |
cache_pitch, cache_pitchf = None, None | |
p_len = min(feats.shape[1], 13000) | |
t4 = ttime() | |
feats = feats[:, :p_len, :] | |
if self.if_f0 == 1: | |
cache_pitch = cache_pitch[:p_len] | |
cache_pitchf = cache_pitchf[:p_len] | |
cache_pitch = torch.LongTensor(cache_pitch).unsqueeze(0).to(self.device) | |
cache_pitchf = torch.FloatTensor(cache_pitchf).unsqueeze(0).to(self.device) | |
p_len = torch.LongTensor([p_len]).to(self.device) | |
ii = 0 # sid | |
sid = torch.LongTensor([ii]).to(self.device) | |
with torch.no_grad(): | |
if self.if_f0 == 1: | |
infered_audio = ( | |
self.net_g.infer( | |
feats, p_len, cache_pitch, cache_pitchf, sid, rate2 | |
)[0][0, 0] | |
.data.cpu() | |
.float() | |
) | |
else: | |
infered_audio = ( | |
self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0] | |
.data.cpu() | |
.float() | |
) | |
t5 = ttime() | |
print("time->fea-index-f0-model:", t2 - t1, t3 - t2, t4 - t3, t5 - t4) | |
return infered_audio | |