File size: 1,665 Bytes
0939023
0e721c2
0939023
 
9dba3d4
0939023
 
0bc5ebd
 
64edef9
0bc5ebd
64edef9
 
 
 
 
 
 
4897216
0939023
 
 
 
 
 
 
 
5683d80
0e721c2
 
 
0939023
 
 
 
 
 
 
 
 
 
0e721c2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import gradio as gr
from huggingface_hub import hf_hub_download
from llama_cpp import Llama

model_id = "TheBloke/KafkaLM-70B-German-V0.1-GGUF"
model_filename = "kafkalm-70b-german-v0.1.Q5_K_M.gguf"
model_path = hf_hub_download(repo_id=model_id, filename=model_filename)

def generate_text(user_input, system_prompt):

    # Initialize the Llama model
    llm = Llama(
        model_path=model_path,  # Use the downloaded model file
        n_ctx=4096,             # Adjust based on the model's max sequence length
        n_threads=8,            # Tailor to your system
        n_gpu_layers=35         # Set based on your GPU's capability
    )

    # Combine the system and user prompts
    prompt = f"\n{system_prompt.strip()}</s>\n\n{user_input.strip()}</s>\n"

    # Generate text using the Llama model
    output = llm(prompt, max_tokens=512, stop=["</s>"], echo=True)

    # Extract the generated text from the output
    generated_text = output['completions'][0]['completion']

    return generated_text

# Setup the Gradio interface
iface = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(lines=2, label="User Prompt", value="Wer ist Kafka?"),
        gr.Textbox(lines=5, label="System Prompt", value="Du bist ein freundlicher und hilfsbereiter KI-Assistent. Du beantwortest Fragen faktenorientiert und präzise, ohne dabei relevante Fakten auszulassen.")
    ],
    outputs=gr.Textbox(label="Generated Text"),
    title="Text Generation with KafkaLM",
    description="Enter a user prompt and a system prompt to generate text using the KafkaLM model."
)

# Launch the Gradio app
if __name__ == "__main__":
    iface.launch()