Last commit not found
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# | |
# This source code is licensed under the Apache License, Version 2.0 | |
# found in the LICENSE file in the root directory of this source tree. | |
# | |
# References: | |
# https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/eval/segmentation_m2f/models/backbones/vit.py | |
from typing import Callable, Optional, Tuple, Union | |
import torch | |
from torch import nn | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features: int, | |
hidden_features: Optional[int] = None, | |
out_features: Optional[int] = None, | |
act_layer: Callable[..., nn.Module] = nn.GELU, | |
drop: float = 0.0, | |
bias: bool = True, | |
) -> None: | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def make_2tuple(x): | |
if isinstance(x, tuple): | |
assert len(x) == 2 | |
return x | |
assert isinstance(x, int) | |
return (x, x) | |
class PatchEmbed(nn.Module): | |
"""2D image to patch embedding: (B,C,H,W) -> (B,N,D) | |
Args: | |
img_size: Image size. | |
patch_size: Patch token size. | |
in_chans: Number of input image channels. | |
embed_dim: Number of linear projection output channels. | |
norm_layer: Normalization layer. | |
""" | |
def __init__( | |
self, | |
img_size: Union[int, Tuple[int, int]] = 224, | |
patch_size: Union[int, Tuple[int, int]] = 16, | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
norm_layer: Optional[Callable] = None, | |
flatten_embedding: bool = True, | |
) -> None: | |
super().__init__() | |
image_HW = make_2tuple(img_size) | |
patch_HW = make_2tuple(patch_size) | |
patch_grid_size = ( | |
image_HW[0] // patch_HW[0], | |
image_HW[1] // patch_HW[1], | |
) | |
self.img_size = image_HW | |
self.patch_size = patch_HW | |
self.patches_resolution = patch_grid_size | |
self.num_patches = patch_grid_size[0] * patch_grid_size[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.flatten_embedding = flatten_embedding | |
self.proj = nn.Conv2d( | |
in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW | |
) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
_, _, H, W = x.shape | |
patch_H, patch_W = self.patch_size | |
assert ( | |
H % patch_H == 0 | |
), f"Input image height {H} is not a multiple of patch height {patch_H}" | |
assert ( | |
W % patch_W == 0 | |
), f"Input image width {W} is not a multiple of patch width: {patch_W}" | |
x = self.proj(x) # B C H W | |
H, W = x.size(2), x.size(3) | |
x = x.flatten(2).transpose(1, 2) # B HW C | |
x = self.norm(x) | |
if not self.flatten_embedding: | |
x = x.reshape(-1, H, W, self.embed_dim) # B H W C | |
return x | |
def flops(self) -> float: | |
Ho, Wo = self.patches_resolution | |
flops = ( | |
Ho | |
* Wo | |
* self.embed_dim | |
* self.in_chans | |
* (self.patch_size[0] * self.patch_size[1]) | |
) | |
if self.norm is not None: | |
flops += Ho * Wo * self.embed_dim | |
return flops | |
XFORMERS_AVAILABLE = False | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
proj_bias: bool = True, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
) -> None: | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim, bias=proj_bias) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
B, N, C = x.shape | |
qkv = ( | |
self.qkv(x) | |
.reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
.permute(2, 0, 3, 1, 4) | |
) | |
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] | |
attn = q @ k.transpose(-2, -1) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class MemEffAttention(Attention): | |
def forward(self, x: torch.Tensor, attn_bias=None) -> torch.Tensor: | |
if not XFORMERS_AVAILABLE: | |
assert attn_bias is None, "xFormers is required for nested tensors usage" | |
return super().forward(x) | |
else: | |
raise NotImplementedError("MemEffAttention do not support xFormer") | |
# B, N, C = x.shape | |
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
# q, k, v = unbind(qkv, 2) | |
# x = memory_efficient_attention(q, k, v, attn_bias=attn_bias) | |
# x = x.reshape([B, N, C]) | |
# x = self.proj(x) | |
# x = self.proj_drop(x) | |
# return x | |
class LayerScale(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
init_values: Union[float, torch.Tensor] = 1e-5, | |
inplace: bool = False, | |
) -> None: | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return x.mul_(self.gamma) if self.inplace else x * self.gamma | |
def drop_path(x, drop_prob: float = 0.0, training: bool = False): | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * ( | |
x.ndim - 1 | |
) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0: | |
random_tensor.div_(keep_prob) | |
output = x * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qkv_bias: bool = False, | |
proj_bias: bool = True, | |
ffn_bias: bool = True, | |
drop: float = 0.0, | |
attn_drop: float = 0.0, | |
init_values=None, | |
drop_path: float = 0.0, | |
act_layer: Callable[..., nn.Module] = nn.GELU, | |
norm_layer: Callable[..., nn.Module] = nn.LayerNorm, | |
attn_class: Callable[..., nn.Module] = Attention, | |
ffn_layer: Callable[..., nn.Module] = Mlp, | |
) -> None: | |
super().__init__() | |
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}") | |
self.norm1 = norm_layer(dim) | |
self.attn = attn_class( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
proj_bias=proj_bias, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
) | |
self.ls1 = ( | |
LayerScale(dim, init_values=init_values) | |
if init_values | |
else nn.Identity() | |
) | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = ffn_layer( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop, | |
bias=ffn_bias, | |
) | |
self.ls2 = ( | |
LayerScale(dim, init_values=init_values) | |
if init_values | |
else nn.Identity() | |
) | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.sample_drop_ratio = drop_path | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
def attn_residual_func(x: torch.Tensor) -> torch.Tensor: | |
return self.ls1(self.attn(self.norm1(x))) | |
def ffn_residual_func(x: torch.Tensor) -> torch.Tensor: | |
return self.ls2(self.mlp(self.norm2(x))) | |
if self.training and self.sample_drop_ratio > 0.1: | |
# the overhead is compensated only for a drop path rate larger than 0.1 | |
x = drop_add_residual_stochastic_depth( | |
x, | |
residual_func=attn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
) | |
x = drop_add_residual_stochastic_depth( | |
x, | |
residual_func=ffn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
) | |
elif self.training and self.sample_drop_ratio > 0.0: | |
x = x + self.drop_path1(attn_residual_func(x)) | |
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2 | |
else: | |
x = x + attn_residual_func(x) | |
x = x + ffn_residual_func(x) | |
return x | |
def drop_add_residual_stochastic_depth( | |
x: torch.Tensor, | |
residual_func: Callable[[torch.Tensor], torch.Tensor], | |
sample_drop_ratio: float = 0.0, | |
) -> torch.Tensor: | |
# 1) extract subset using permutation | |
b, n, d = x.shape | |
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) | |
brange = (torch.randperm(b, device=x.device))[:sample_subset_size] | |
x_subset = x[brange] | |
# 2) apply residual_func to get residual | |
residual = residual_func(x_subset) | |
x_flat = x.flatten(1) | |
residual = residual.flatten(1) | |
residual_scale_factor = b / sample_subset_size | |
# 3) add the residual | |
x_plus_residual = torch.index_add( | |
x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor | |
) | |
return x_plus_residual.view_as(x) | |