qubvel-hf's picture
qubvel-hf HF staff
Update app.py
f83c0ee verified
raw
history blame
4.65 kB
#!/usr/bin/env python
"""A demo of the VitPose model.
This code is based on the implementation from the Colab notebook:
https://colab.research.google.com/drive/1e8fcby5rhKZWcr9LSN8mNbQ0TU4Dxxpo
"""
import pathlib
import tempfile
import cv2
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import supervision as sv
import torch
import tqdm
from transformers import AutoProcessor, AutoModelForObjectDetection
DESCRIPTION = "# DAB-DETR"
MAX_NUM_FRAMES = 300
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint = "IDEA-Research/dab-detr-resnet-50-dc5-pat3"
image_processor = AutoProcessor.from_pretrained(checkpoint)
model = AutoModelForObjectDetection.from_pretrained(checkpoint, device_map=device)
@spaces.GPU(duration=5)
@torch.inference_mode()
def process_image(image: PIL.Image.Image) -> tuple[PIL.Image.Image, list[dict]]:
inputs = image_processor(images=image, return_tensors="pt").to(device)
outputs = model(**inputs)
results = image_processor.post_process_object_detection(
outputs, target_sizes=torch.tensor([(image.height, image.width)]), threshold=0.3
)
result = results[0] # take first image results
boxes_xyxy = result["boxes"].cpu().numpy()
indexes = result["labels"].cpu().numpy()
scores = result["scores"].cpu().numpy()
text_labels = [
f"{model.config.id2label[index]} [{score.item():.2f}]" for index, score in zip(indexes, scores)
]
detections = sv.Detections(xyxy=boxes_xyxy, class_id=indexes, confidence=scores)
bounding_box_annotator = sv.BoxAnnotator(color=sv.Color.WHITE, color_lookup=sv.ColorLookup.INDEX, thickness=1)
label_annotator = sv.LabelAnnotator()
# annotate bounding boxes
annotated_frame = bounding_box_annotator.annotate(scene=image.copy(), detections=detections)
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=text_labels)
return annotated_frame
@spaces.GPU(duration=90)
def process_video(
video_path: str,
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
) -> str:
cap = cv2.VideoCapture(video_path)
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
fps = cap.get(cv2.CAP_PROP_FPS)
num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as out_file:
writer = cv2.VideoWriter(out_file.name, fourcc, fps, (width, height))
for _ in tqdm.auto.tqdm(range(min(MAX_NUM_FRAMES, num_frames))):
ok, frame = cap.read()
if not ok:
break
rgb_frame = frame[:, :, ::-1]
annotated_frame = process_image(PIL.Image.fromarray(rgb_frame))
writer.write(np.asarray(annotated_frame)[:, :, ::-1])
writer.release()
cap.release()
return out_file.name
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.Tab("Image"):
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
run_button_image = gr.Button()
with gr.Column():
output_image = gr.Image(label="Output Image")
gr.Examples(
examples=sorted(pathlib.Path("images").glob("*.jpg")),
inputs=input_image,
outputs=[output_image],
fn=process_image,
)
run_button_image.click(
fn=process_image,
inputs=input_image,
outputs=[output_image],
)
with gr.Tab("Video"):
gr.Markdown(f"The input video will be truncated to {MAX_NUM_FRAMES} frames.")
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video")
run_button_video = gr.Button()
with gr.Column():
output_video = gr.Video(label="Output Video")
gr.Examples(
examples=sorted(pathlib.Path("videos").glob("*.mp4")),
inputs=input_video,
outputs=output_video,
fn=process_video,
cache_examples=False,
)
run_button_video.click(
fn=process_video,
inputs=input_video,
outputs=output_video,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()