Spaces:
Sleeping
Sleeping
Added small object search
Browse files
helper.py
CHANGED
@@ -8,8 +8,11 @@ import torch.nn as nn
|
|
8 |
import boto3
|
9 |
import streamlit as st
|
10 |
from PIL import Image
|
|
|
11 |
from io import BytesIO
|
|
|
12 |
from typing import List, Union
|
|
|
13 |
|
14 |
|
15 |
# Initialize the model globally to avoid reloading each time
|
@@ -21,12 +24,10 @@ tokenizer = get_tokenizer('hf-hub:timm/ViT-SO400M-14-SigLIP-384')
|
|
21 |
def encode_query(query: Union[str, Image.Image]) -> torch.Tensor:
|
22 |
"""
|
23 |
Encode the query using the OpenCLIP model.
|
24 |
-
|
25 |
Parameters
|
26 |
----------
|
27 |
query : Union[str, Image.Image]
|
28 |
The query, which can be a text string or an Image object.
|
29 |
-
|
30 |
Returns
|
31 |
-------
|
32 |
torch.Tensor
|
@@ -45,21 +46,49 @@ def encode_query(query: Union[str, Image.Image]) -> torch.Tensor:
|
|
45 |
|
46 |
return query_embedding
|
47 |
|
48 |
-
def load_hf_datasets(
|
49 |
"""
|
50 |
Load Datasets from Hugging Face as DF
|
51 |
---------------------------------------
|
52 |
dataset_name: str - name of dataset on Hugging Face
|
53 |
---------------------------------------
|
54 |
-
|
55 |
RETURNS: dataset as pandas dataframe
|
56 |
"""
|
57 |
-
|
58 |
-
|
59 |
-
main_dataset = dataset['Main_1']
|
60 |
-
# Convert to Pandas DataFrame
|
61 |
-
df = main_dataset.to_pandas()
|
62 |
return df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
def get_image_vectors(df):
|
65 |
# Get the image vectors from the dataframe
|
@@ -67,7 +96,7 @@ def get_image_vectors(df):
|
|
67 |
return torch.tensor(image_vectors, dtype=torch.float32)
|
68 |
|
69 |
|
70 |
-
def search(query, df, limit, offset, scoring_func, search_in_images
|
71 |
if search_in_images:
|
72 |
# Encode the image query
|
73 |
query_vector = encode_query(query)
|
@@ -79,7 +108,7 @@ def search(query, df, limit, offset, scoring_func, search_in_images, search_in_s
|
|
79 |
|
80 |
# Calculate the cosine similarity between the query vector and each image vector
|
81 |
query_vector = query_vector[0, :].detach().numpy() # Detach and convert to a NumPy array
|
82 |
-
image_vectors =
|
83 |
cosine_similarities = cosine_similarity([query_vector], image_vectors)
|
84 |
|
85 |
# Get the top K indices of the most similar image vectors
|
@@ -88,6 +117,29 @@ def search(query, df, limit, offset, scoring_func, search_in_images, search_in_s
|
|
88 |
# Return the top K indices
|
89 |
return top_k_indices
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
def get_file_paths(df, top_k_indices, column_name = 'File_Path'):
|
92 |
"""
|
93 |
Retrieve the file paths (or any specific column) from the DataFrame using the top K indices.
|
@@ -97,6 +149,21 @@ def get_file_paths(df, top_k_indices, column_name = 'File_Path'):
|
|
97 |
- top_k_indices: numpy array of the top K indices
|
98 |
- column_name: str, the name of the column to fetch (e.g., 'ImagePath')
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
Returns:
|
101 |
- top_k_paths: list of file paths or values from the specified column
|
102 |
"""
|
@@ -104,8 +171,7 @@ def get_file_paths(df, top_k_indices, column_name = 'File_Path'):
|
|
104 |
top_k_paths = df.iloc[top_k_indices][column_name].tolist()
|
105 |
return top_k_paths
|
106 |
|
107 |
-
|
108 |
-
def get_images_from_s3_to_display(bucket_name, file_paths, AWS_ACCESS_KEY_ID,AWS_SECRET_ACCESS_KEY, folder_name= None):
|
109 |
"""
|
110 |
Retrieve and display images from AWS S3 in a Streamlit app.
|
111 |
|
@@ -135,21 +201,88 @@ def get_images_from_s3_to_display(bucket_name, file_paths, AWS_ACCESS_KEY_ID,AWS
|
|
135 |
|
136 |
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
def main():
|
139 |
-
|
|
|
140 |
query = "black car"
|
141 |
limit = 10
|
142 |
offset = 0
|
143 |
scoring_func = "cosine"
|
144 |
search_in_images = True
|
145 |
-
search_in_small_objects =
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
main()
|
155 |
-
|
|
|
8 |
import boto3
|
9 |
import streamlit as st
|
10 |
from PIL import Image
|
11 |
+
from PIL import ImageDraw
|
12 |
from io import BytesIO
|
13 |
+
import pandas as pd
|
14 |
from typing import List, Union
|
15 |
+
import concurrent.futures
|
16 |
|
17 |
|
18 |
# Initialize the model globally to avoid reloading each time
|
|
|
24 |
def encode_query(query: Union[str, Image.Image]) -> torch.Tensor:
|
25 |
"""
|
26 |
Encode the query using the OpenCLIP model.
|
|
|
27 |
Parameters
|
28 |
----------
|
29 |
query : Union[str, Image.Image]
|
30 |
The query, which can be a text string or an Image object.
|
|
|
31 |
Returns
|
32 |
-------
|
33 |
torch.Tensor
|
|
|
46 |
|
47 |
return query_embedding
|
48 |
|
49 |
+
def load_hf_datasets(key,dataset):
|
50 |
"""
|
51 |
Load Datasets from Hugging Face as DF
|
52 |
---------------------------------------
|
53 |
dataset_name: str - name of dataset on Hugging Face
|
54 |
---------------------------------------
|
|
|
55 |
RETURNS: dataset as pandas dataframe
|
56 |
"""
|
57 |
+
df = dataset[key].to_pandas()
|
58 |
+
|
|
|
|
|
|
|
59 |
return df
|
60 |
+
|
61 |
+
def parallel_load_and_combine(dataset_keys, dataset):
|
62 |
+
"""
|
63 |
+
Load datasets in parallel and combine Main and Split keys
|
64 |
+
----------------------------------------------------------
|
65 |
+
dataset_keys: list - keys of the dataset (e.g., ['Main_1', 'Split_1', ...])
|
66 |
+
dataset: DatasetDict - the loaded Hugging Face dataset
|
67 |
+
----------------------------------------------------------
|
68 |
+
RETURNS: combined DataFrame from both Main and Split keys
|
69 |
+
"""
|
70 |
+
# Separate keys into Main and Split lists
|
71 |
+
main_keys = [key for key in dataset_keys if key.startswith('Main')]
|
72 |
+
split_keys = [key for key in dataset_keys if key.startswith('Split')]
|
73 |
+
|
74 |
+
def process_key(key, key_type):
|
75 |
+
df = load_hf_datasets(key, dataset)
|
76 |
+
return df
|
77 |
+
|
78 |
+
# Parallel loading of Main keys
|
79 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
80 |
+
main_dfs = list(executor.map(lambda key: process_key(key, 'Main'), main_keys))
|
81 |
+
|
82 |
+
# Parallel loading of Split keys
|
83 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
84 |
+
split_dfs = list(executor.map(lambda key: process_key(key, 'Split'), split_keys))
|
85 |
+
|
86 |
+
# Combine Main DataFrames and Split DataFrames
|
87 |
+
main_combined_df = pd.concat(main_dfs, ignore_index=True) if main_dfs else pd.DataFrame()
|
88 |
+
split_combined_df = pd.concat(split_dfs, ignore_index=True) if split_dfs else pd.DataFrame()
|
89 |
+
|
90 |
+
|
91 |
+
return main_combined_df, split_combined_df
|
92 |
|
93 |
def get_image_vectors(df):
|
94 |
# Get the image vectors from the dataframe
|
|
|
96 |
return torch.tensor(image_vectors, dtype=torch.float32)
|
97 |
|
98 |
|
99 |
+
def search(query, df, limit, offset, scoring_func, search_in_images):
|
100 |
if search_in_images:
|
101 |
# Encode the image query
|
102 |
query_vector = encode_query(query)
|
|
|
108 |
|
109 |
# Calculate the cosine similarity between the query vector and each image vector
|
110 |
query_vector = query_vector[0, :].detach().numpy() # Detach and convert to a NumPy array
|
111 |
+
image_vectors = image_vectoßrs.detach().numpy() # Convert the image vectors to a NumPy array
|
112 |
cosine_similarities = cosine_similarity([query_vector], image_vectors)
|
113 |
|
114 |
# Get the top K indices of the most similar image vectors
|
|
|
117 |
# Return the top K indices
|
118 |
return top_k_indices
|
119 |
|
120 |
+
#Try Batch Search
|
121 |
+
def batch_search(query, df, batch_size=100000, limit=10):
|
122 |
+
top_k_indices = []
|
123 |
+
|
124 |
+
# Get the image vectors from the dataframe and ensure they are NumPy arrays
|
125 |
+
vectors = get_image_vectors(df).numpy() # Convert to NumPy array if it's a tensor
|
126 |
+
|
127 |
+
# Encode the query and ensure it's a NumPy array
|
128 |
+
query_vector = encode_query(query)[0].detach().numpy() # Assuming the first element is the query embedding
|
129 |
+
|
130 |
+
# Iterate over the batches and compute cosine similarities
|
131 |
+
for i in range(0, len(vectors), batch_size):
|
132 |
+
batch_vectors = vectors[i:i + batch_size] # Extract a batch of vectors
|
133 |
+
|
134 |
+
# Compute cosine similarity between the query vector and the batch
|
135 |
+
batch_similarities = cosine_similarity([query_vector], batch_vectors)
|
136 |
+
|
137 |
+
# Get the top-k similar vectors within this batch
|
138 |
+
top_k_indices.extend(np.argsort(-batch_similarities[0])[:limit])
|
139 |
+
|
140 |
+
return top_k_indices
|
141 |
+
|
142 |
+
|
143 |
def get_file_paths(df, top_k_indices, column_name = 'File_Path'):
|
144 |
"""
|
145 |
Retrieve the file paths (or any specific column) from the DataFrame using the top K indices.
|
|
|
149 |
- top_k_indices: numpy array of the top K indices
|
150 |
- column_name: str, the name of the column to fetch (e.g., 'ImagePath')
|
151 |
|
152 |
+
Returns:
|
153 |
+
- top_k_paths: list of file paths or values from the specified column
|
154 |
+
"""
|
155 |
+
# Fetch the specific column corresponding to the top K indices
|
156 |
+
top_k_paths = df.iloc[top_k_indices][column_name].tolist()
|
157 |
+
return top_k_paths
|
158 |
+
def get_cordinates(df, top_k_indices, column_name = 'Coordinate'):
|
159 |
+
"""
|
160 |
+
Retrieve the file paths (or any specific column) from the DataFrame using the top K indices.
|
161 |
+
|
162 |
+
Parameters:
|
163 |
+
- df: pandas DataFrame containing the data
|
164 |
+
- top_k_indices: numpy array of the top K indices
|
165 |
+
- column_name: str, the name of the column to fetch (e.g., 'ImagePath')
|
166 |
+
|
167 |
Returns:
|
168 |
- top_k_paths: list of file paths or values from the specified column
|
169 |
"""
|
|
|
171 |
top_k_paths = df.iloc[top_k_indices][column_name].tolist()
|
172 |
return top_k_paths
|
173 |
|
174 |
+
def get_images_from_s3_to_display(bucket_name, file_paths, AWS_ACCESS_KEY_ID,AWS_SECRET_ACCESS_KEY, folder_name):
|
|
|
175 |
"""
|
176 |
Retrieve and display images from AWS S3 in a Streamlit app.
|
177 |
|
|
|
201 |
|
202 |
|
203 |
|
204 |
+
def get_images_with_bounding_boxes_from_s3(bucket_name, file_paths, bounding_boxes, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_name):
|
205 |
+
"""
|
206 |
+
Retrieve and display images from AWS S3 with corresponding bounding boxes in a Streamlit app.
|
207 |
+
|
208 |
+
Parameters:
|
209 |
+
- bucket_name: str, the name of the S3 bucket
|
210 |
+
- file_paths: list, a list of file paths to retrieve from S3
|
211 |
+
- bounding_boxes: list of numpy arrays or lists, each containing coordinates of bounding boxes (in the form [x_min, y_min, x_max, y_max])
|
212 |
+
- AWS_ACCESS_KEY_ID: str, AWS access key ID for authentication
|
213 |
+
- AWS_SECRET_ACCESS_KEY: str, AWS secret access key for authentication
|
214 |
+
- folder_name: str, the folder prefix in S3 bucket where the images are stored
|
215 |
+
|
216 |
+
Returns:
|
217 |
+
- None (directly displays images in the Streamlit app with bounding boxes)
|
218 |
+
"""
|
219 |
+
# Initialize S3 client
|
220 |
+
s3 = boto3.client(
|
221 |
+
's3',
|
222 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
223 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY
|
224 |
+
)
|
225 |
+
|
226 |
+
# Iterate over file paths and corresponding bounding boxes
|
227 |
+
for file_path, box_coords in zip(file_paths, bounding_boxes):
|
228 |
+
# Retrieve the image from S3
|
229 |
+
s3_object = s3.get_object(Bucket=bucket_name, Key=f"{folder_name}{file_path}")
|
230 |
+
img_data = s3_object['Body'].read()
|
231 |
+
|
232 |
+
# Open the image using PIL
|
233 |
+
img = Image.open(BytesIO(img_data))
|
234 |
+
|
235 |
+
# Draw bounding boxes on the image
|
236 |
+
draw = ImageDraw.Draw(img)
|
237 |
+
|
238 |
+
# Ensure box_coords is iterable, in case it's a single numpy array or float value
|
239 |
+
if isinstance(box_coords, (np.ndarray, list)):
|
240 |
+
# Check if we have multiple bounding boxes or a single one
|
241 |
+
if len(box_coords) > 0 and isinstance(box_coords[0], (np.ndarray, list)):
|
242 |
+
# Multiple bounding boxes
|
243 |
+
for box in box_coords:
|
244 |
+
x_min, y_min, x_max, y_max = map(int, box) # Convert to integers
|
245 |
+
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3)
|
246 |
+
else:
|
247 |
+
# Single bounding box
|
248 |
+
x_min, y_min, x_max, y_max = map(int, box_coords)
|
249 |
+
draw.rectangle([x_min, y_min, x_max, y_max], outline="red", width=3)
|
250 |
+
else:
|
251 |
+
raise ValueError(f"Bounding box data for {file_path} is not in an iterable format.")
|
252 |
+
|
253 |
+
# Display the image with bounding boxes using Streamlit
|
254 |
+
st.image(img, caption=file_path, use_column_width=True)
|
255 |
+
|
256 |
+
|
257 |
def main():
|
258 |
+
print('Begin Main')
|
259 |
+
dataset_name = "WayveScenes"
|
260 |
query = "black car"
|
261 |
limit = 10
|
262 |
offset = 0
|
263 |
scoring_func = "cosine"
|
264 |
search_in_images = True
|
265 |
+
search_in_small_objects = True
|
266 |
+
dataset = load_dataset(f"quasara-io/{dataset_name}")
|
267 |
+
print('loaded dataset')
|
268 |
+
dataset_keys = dataset.keys()
|
269 |
+
main_df, split_df = parallel_load_and_combine(dataset_keys, dataset)
|
270 |
+
#Now we get the coordinates and the stuff
|
271 |
+
print('processed datasets')
|
272 |
+
if search_in_small_objects:
|
273 |
+
results = batch_search(query, split_df)
|
274 |
+
print(results)
|
275 |
+
top_k_paths = get_file_paths(split_df,results)
|
276 |
+
top_k_cordinates = get_cordinates(split_df, results)
|
277 |
+
print(top_k_paths)
|
278 |
+
print(top_k_cordinates)
|
279 |
+
return top_k_paths, top_k_cordinates
|
280 |
+
else:
|
281 |
+
results = search(query, main_df, limit, offset, scoring_func, search_in_images)
|
282 |
+
top_k_paths = get_file_paths(main_df,results)
|
283 |
+
print(top_k_paths)
|
284 |
+
return top_k_paths
|
285 |
|
286 |
|
287 |
if __name__ == "__main__":
|
288 |
main()
|
|