inie2003's picture
added console info
022e3b7 verified
raw
history blame
5.81 kB
import streamlit as st
import logging
import os
import time
import psutil
from helper import (
load_dataset, search, get_file_paths,
get_cordinates, get_images_from_s3_to_display,
get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
)
# Configure logging
logging.basicConfig(level=logging.INFO)
# Load environment variables
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
# Predefined list of datasets
datasets = ["WayveScenes", "MajorTom-Europe"]
description = {
"StopSign_test": "A test dataset for me",
"WayveScenes": "A large-scale dataset featuring diverse urban driving scenes.",
"MajorTom-Europe": "A geospatial dataset containing satellite imagery from across Europe."
}
selection = {
'WayveScenes': [1, 8],
"MajorTom-Europe": [1, 18]
}
# AWS S3 bucket name
bucket_name = "datasets-quasara-io"
# Function to log CPU and memory usage
def log_resource_usage(stage):
cpu_usage = psutil.cpu_percent(interval=1)
memory_info = psutil.virtual_memory()
logging.info(f"{stage} - CPU Usage: {cpu_usage}%, Memory Usage: {memory_info.percent}%")
# Streamlit App
def main():
# Initialize session state variables if not already initialized
if 'search_in_small_objects' not in st.session_state:
st.session_state.search_in_small_objects = False
if 'dataset_number' not in st.session_state:
st.session_state.dataset_number = 1
if 'df' not in st.session_state:
st.session_state.df = None
st.title("Semantic Search and Image Display")
log_resource_usage("Initialization")
# Select dataset from dropdown
dataset_name = st.selectbox("Select Dataset", datasets)
if dataset_name == 'StopSign_test':
folder_path = ""
else:
folder_path = f'{dataset_name}/'
st.caption(description[dataset_name])
if st.checkbox("Enable Small Object Search", value=st.session_state.search_in_small_objects):
st.session_state.search_in_small_objects = True
st.text("Small Object Search Enabled")
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][1] + 1)))
else:
st.session_state.search_in_small_objects = False
st.text("Small Object Search Disabled")
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][0] + 1)))
dataset_limit = st.slider("Size of Dataset to be searched from", min_value=1000, max_value=20000, value=10000)
st.text(f'The smaller the dataset, the faster the search will work.')
# Load dataset with limit only if not already loaded
if st.button("Load Dataset"):
try:
loading_dataset_text = st.empty()
loading_dataset_text.text("Loading Dataset...")
loading_dataset_bar = st.progress(0)
# Simulate dataset loading progress
for i in range(0, 100, 25):
time.sleep(0.2)
loading_dataset_bar.progress(i + 25)
log_resource_usage("Before Loading Dataset")
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
st.session_state.df = df
loading_dataset_bar.progress(100)
loading_dataset_text.text("Dataset loaded successfully!")
st.success(f"Dataset loaded successfully with {len(df)} rows.")
log_resource_usage("After Loading Dataset")
except Exception as e:
logging.error(f"Failed to load dataset: {e}")
st.error(f"Failed to load dataset: {e}")
# Input search query
query = st.text_input("Enter your search query")
# Number of results to display
limit = st.number_input("Number of results to display", min_value=1, max_value=10, value=10)
# Search button
if st.button("Search"):
# Validate input
if not query:
st.warning("Please enter a search query.")
else:
try:
search_loading_text = st.empty()
search_loading_text.text("Searching...")
search_progress_bar = st.progress(0)
log_resource_usage("Before Search")
df = st.session_state.df
if st.session_state.search_in_small_objects:
results = search(query, df, limit)
top_k_paths = get_file_paths(df, results)
top_k_cordinates = get_cordinates(df, results)
else:
results = search(query, df, limit)
top_k_paths = get_file_paths(df, results)
search_progress_bar.progress(100)
search_loading_text.text("Search completed!")
log_resource_usage("After Search")
# Load Images with Bounding Boxes if applicable
if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
get_images_with_bounding_boxes_from_s3(bucket_name, top_k_paths, top_k_cordinates, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
elif not st.session_state.search_in_small_objects and top_k_paths:
st.write(f"Displaying top {len(top_k_paths)} results for query '{query}':")
get_images_from_s3_to_display(bucket_name, top_k_paths, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
else:
st.write("No results found.")
except Exception as e:
logging.error(f"Search failed: {e}")
st.error(f"Search failed: {e}")
if __name__ == "__main__":
main()