import streamlit as st from transformers import pipeline # Load your trained model and tokenizer model_path = "quadranttechnologies/Clinical_Decision_Support" # Update with your model path classifier = pipeline("text-classification", model=model_path) # Define the Streamlit app st.title("Clinical Decision Support System") st.write("Provide patient details to get a medical recommendation.") # Input fields for user age = st.number_input("Age", min_value=0, max_value=120, step=1, value=50) gender = st.selectbox("Gender", options=["Male", "Female"]) weight = st.number_input("Weight (kg)", min_value=0, max_value=300, step=1, value=70) smoking_status = st.selectbox("Smoking Status", options=["Never", "Former", "Current"]) diabetes = st.selectbox("Diabetes", options=["No", "Yes"]) hypertension = st.selectbox("Hypertension", options=["No", "Yes"]) cholesterol = st.number_input("Cholesterol (mg/dL)", min_value=0, max_value=500, step=1, value=200) heart_disease_history = st.selectbox("Heart Disease History", options=["No", "Yes"]) symptoms = st.text_input("Symptoms", value="Chest pain") risk_score = st.number_input("Risk Score", min_value=0.0, max_value=10.0, step=0.1, value=5.0) # Button to get recommendation if st.button("Get Recommendation"): # Convert inputs to model format input_text = ( f"Age: {age}, Gender: {gender}, Weight: {weight}, Smoking Status: {smoking_status}, " f"Diabetes: {1 if diabetes == 'Yes' else 0}, Hypertension: {1 if hypertension == 'Yes' else 0}, " f"Cholesterol: {cholesterol}, Heart Disease History: {1 if heart_disease_history == 'Yes' else 0}, " f"Symptoms: {symptoms}, Risk Score: {risk_score}" ) # Get prediction from the model prediction = classifier(input_text) recommendation_label = prediction[0]['label'] # Map label to recommendation title (ensure you have reverse mapping loaded) reverse_label_mapping = { "LABEL_0": "Maintain healthy lifestyle", "LABEL_1": "Immediate cardiologist consultation", "LABEL_2": "Start statins, monitor regularly", "LABEL_3": "Lifestyle changes, monitor", "LABEL_4": "No immediate action", "LABEL_5": "Increase statins, lifestyle changes", "LABEL_6": "Start ACE inhibitors, monitor" } recommendation = reverse_label_mapping.get(recommendation_label, "Unknown Recommendation") # Display the recommendation st.subheader("Recommendation") st.write(recommendation)