Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,52 +1,52 @@ | |
| 1 | 
            -
            import streamlit as st
         | 
| 2 | 
            -
            from transformers import pipeline
         | 
| 3 | 
            -
             | 
| 4 | 
            -
            # Load your trained model and tokenizer
         | 
| 5 | 
            -
            model_path = " | 
| 6 | 
            -
            classifier = pipeline("text-classification", model=model_path)
         | 
| 7 | 
            -
             | 
| 8 | 
            -
            # Define the Streamlit app
         | 
| 9 | 
            -
            st.title("Clinical Decision Support System")
         | 
| 10 | 
            -
            st.write("Provide patient details to get a medical recommendation.")
         | 
| 11 | 
            -
             | 
| 12 | 
            -
            # Input fields for user
         | 
| 13 | 
            -
            age = st.number_input("Age", min_value=0, max_value=120, step=1, value=50)
         | 
| 14 | 
            -
            gender = st.selectbox("Gender", options=["Male", "Female"])
         | 
| 15 | 
            -
            weight = st.number_input("Weight (kg)", min_value=0, max_value=300, step=1, value=70)
         | 
| 16 | 
            -
            smoking_status = st.selectbox("Smoking Status", options=["Never", "Former", "Current"])
         | 
| 17 | 
            -
            diabetes = st.selectbox("Diabetes", options=["No", "Yes"])
         | 
| 18 | 
            -
            hypertension = st.selectbox("Hypertension", options=["No", "Yes"])
         | 
| 19 | 
            -
            cholesterol = st.number_input("Cholesterol (mg/dL)", min_value=0, max_value=500, step=1, value=200)
         | 
| 20 | 
            -
            heart_disease_history = st.selectbox("Heart Disease History", options=["No", "Yes"])
         | 
| 21 | 
            -
            symptoms = st.text_input("Symptoms", value="Chest pain")
         | 
| 22 | 
            -
            risk_score = st.number_input("Risk Score", min_value=0.0, max_value=10.0, step=0.1, value=5.0)
         | 
| 23 | 
            -
             | 
| 24 | 
            -
            # Button to get recommendation
         | 
| 25 | 
            -
            if st.button("Get Recommendation"):
         | 
| 26 | 
            -
                # Convert inputs to model format
         | 
| 27 | 
            -
                input_text = (
         | 
| 28 | 
            -
                    f"Age: {age}, Gender: {gender}, Weight: {weight}, Smoking Status: {smoking_status}, "
         | 
| 29 | 
            -
                    f"Diabetes: {1 if diabetes == 'Yes' else 0}, Hypertension: {1 if hypertension == 'Yes' else 0}, "
         | 
| 30 | 
            -
                    f"Cholesterol: {cholesterol}, Heart Disease History: {1 if heart_disease_history == 'Yes' else 0}, "
         | 
| 31 | 
            -
                    f"Symptoms: {symptoms}, Risk Score: {risk_score}"
         | 
| 32 | 
            -
                )
         | 
| 33 | 
            -
             | 
| 34 | 
            -
                # Get prediction from the model
         | 
| 35 | 
            -
                prediction = classifier(input_text)
         | 
| 36 | 
            -
                recommendation_label = prediction[0]['label']
         | 
| 37 | 
            -
                
         | 
| 38 | 
            -
                # Map label to recommendation title (ensure you have reverse mapping loaded)
         | 
| 39 | 
            -
                reverse_label_mapping = {
         | 
| 40 | 
            -
                    "LABEL_0": "Maintain healthy lifestyle",
         | 
| 41 | 
            -
                    "LABEL_1": "Immediate cardiologist consultation",
         | 
| 42 | 
            -
                    "LABEL_2": "Start statins, monitor regularly",
         | 
| 43 | 
            -
                    "LABEL_3": "Lifestyle changes, monitor",
         | 
| 44 | 
            -
                    "LABEL_4": "No immediate action",
         | 
| 45 | 
            -
                    "LABEL_5": "Increase statins, lifestyle changes",
         | 
| 46 | 
            -
                    "LABEL_6": "Start ACE inhibitors, monitor"
         | 
| 47 | 
            -
                }
         | 
| 48 | 
            -
                recommendation = reverse_label_mapping.get(recommendation_label, "Unknown Recommendation")
         | 
| 49 | 
            -
                
         | 
| 50 | 
            -
                # Display the recommendation
         | 
| 51 | 
            -
                st.subheader("Recommendation")
         | 
| 52 | 
            -
                st.write(recommendation)
         | 
|  | |
| 1 | 
            +
            import streamlit as st
         | 
| 2 | 
            +
            from transformers import pipeline
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Load your trained model and tokenizer
         | 
| 5 | 
            +
            model_path = "quadranttechnologies/Clinical_Decision_Support"  # Update with your model path
         | 
| 6 | 
            +
            classifier = pipeline("text-classification", model=model_path)
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            # Define the Streamlit app
         | 
| 9 | 
            +
            st.title("Clinical Decision Support System")
         | 
| 10 | 
            +
            st.write("Provide patient details to get a medical recommendation.")
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            # Input fields for user
         | 
| 13 | 
            +
            age = st.number_input("Age", min_value=0, max_value=120, step=1, value=50)
         | 
| 14 | 
            +
            gender = st.selectbox("Gender", options=["Male", "Female"])
         | 
| 15 | 
            +
            weight = st.number_input("Weight (kg)", min_value=0, max_value=300, step=1, value=70)
         | 
| 16 | 
            +
            smoking_status = st.selectbox("Smoking Status", options=["Never", "Former", "Current"])
         | 
| 17 | 
            +
            diabetes = st.selectbox("Diabetes", options=["No", "Yes"])
         | 
| 18 | 
            +
            hypertension = st.selectbox("Hypertension", options=["No", "Yes"])
         | 
| 19 | 
            +
            cholesterol = st.number_input("Cholesterol (mg/dL)", min_value=0, max_value=500, step=1, value=200)
         | 
| 20 | 
            +
            heart_disease_history = st.selectbox("Heart Disease History", options=["No", "Yes"])
         | 
| 21 | 
            +
            symptoms = st.text_input("Symptoms", value="Chest pain")
         | 
| 22 | 
            +
            risk_score = st.number_input("Risk Score", min_value=0.0, max_value=10.0, step=0.1, value=5.0)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            # Button to get recommendation
         | 
| 25 | 
            +
            if st.button("Get Recommendation"):
         | 
| 26 | 
            +
                # Convert inputs to model format
         | 
| 27 | 
            +
                input_text = (
         | 
| 28 | 
            +
                    f"Age: {age}, Gender: {gender}, Weight: {weight}, Smoking Status: {smoking_status}, "
         | 
| 29 | 
            +
                    f"Diabetes: {1 if diabetes == 'Yes' else 0}, Hypertension: {1 if hypertension == 'Yes' else 0}, "
         | 
| 30 | 
            +
                    f"Cholesterol: {cholesterol}, Heart Disease History: {1 if heart_disease_history == 'Yes' else 0}, "
         | 
| 31 | 
            +
                    f"Symptoms: {symptoms}, Risk Score: {risk_score}"
         | 
| 32 | 
            +
                )
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                # Get prediction from the model
         | 
| 35 | 
            +
                prediction = classifier(input_text)
         | 
| 36 | 
            +
                recommendation_label = prediction[0]['label']
         | 
| 37 | 
            +
                
         | 
| 38 | 
            +
                # Map label to recommendation title (ensure you have reverse mapping loaded)
         | 
| 39 | 
            +
                reverse_label_mapping = {
         | 
| 40 | 
            +
                    "LABEL_0": "Maintain healthy lifestyle",
         | 
| 41 | 
            +
                    "LABEL_1": "Immediate cardiologist consultation",
         | 
| 42 | 
            +
                    "LABEL_2": "Start statins, monitor regularly",
         | 
| 43 | 
            +
                    "LABEL_3": "Lifestyle changes, monitor",
         | 
| 44 | 
            +
                    "LABEL_4": "No immediate action",
         | 
| 45 | 
            +
                    "LABEL_5": "Increase statins, lifestyle changes",
         | 
| 46 | 
            +
                    "LABEL_6": "Start ACE inhibitors, monitor"
         | 
| 47 | 
            +
                }
         | 
| 48 | 
            +
                recommendation = reverse_label_mapping.get(recommendation_label, "Unknown Recommendation")
         | 
| 49 | 
            +
                
         | 
| 50 | 
            +
                # Display the recommendation
         | 
| 51 | 
            +
                st.subheader("Recommendation")
         | 
| 52 | 
            +
                st.write(recommendation)
         | 

