pix2struct / app.py
qtoino's picture
Update app.py
9b65e39 verified
raw
history blame
2.82 kB
import gradio as gr
import requests
from PIL import Image
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
import spaces
@spaces.GPU
def infer_infographics(image, question):
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-ai2d-base")
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-ai2d-base")
inputs = processor(images=image, text=question, return_tensors="pt")
predictions = model.generate(**inputs)
return processor.decode(predictions[0], skip_special_tokens=True)
@spaces.GPU
def infer_ui(image, question):
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-screen2words-base")
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-screen2words-base")
inputs = processor(images=image,text=question, return_tensors="pt")
predictions = model.generate(**inputs)
return processor.decode(predictions[0], skip_special_tokens=True)
@spaces.GPU
def infer_chart(image, question):
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-chartqa-base")
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-chartqa-base")
inputs = processor(images=image, text=question, return_tensors="pt")
predictions = model.generate(**inputs)
return processor.decode(predictions[0], skip_special_tokens=True)
@spaces.GPU
def infer_doc(image, question):
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-docvqa-base")
processor = Pix2StructProcessor.from_pretrained("google/pix2struct-docvqa-base")
inputs = processor(images=image, text=question, return_tensors="pt")
predictions = model.generate(**inputs)
return processor.decode(predictions[0], skip_special_tokens=True)
css = """
#mkd {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<h1><center>Pix2Struct πŸ“„<center><h1>")
gr.HTML("<h3><center>Pix2Struct is a powerful backbone for visual question answering. ⚑</h3>")
gr.HTML("<h3><center>This app has base version of the model. For better performance, use large checkpoints.<h3>")
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Document")
question = gr.Text(label="Question")
submit_btn = gr.Button(value="Submit")
output = gr.Text(label="Answer")
gr.Examples(
[["docvqa_example.png", "How many items are sold?"]],
inputs = [input_img, question],
outputs = [output],
fn=infer_doc,
cache_examples=True,
label='Click on any Examples below to get Document Question Answering results quickly πŸ‘‡'
)
submit_btn.click(infer_doc, [input_img, question], [output])
demo.launch(debug=True)