VyLinh-ChatUI / app.py
qnguyen3's picture
Update app.py
9d06776 verified
raw
history blame
4.29 kB
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "arcee-ai/Arcee-VyLinh"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODELS.split("/")[-1]
TITLE = "<h1><center>Arcee-VyLinh ChatUI</center></h1>"
DESCRIPTION = f"""
<h3>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></h3>
<center>
<p>Arce-VyLinh is a Small Language Model specialized in Vietnamese, developed by Arcee.ai
<br>
Feel free to test without log.
</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
model = AutoModelForCausalLM.from_pretrained(
MODELS,
torch_dtype=torch.float16,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODELS)
@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = [{"role": "system", "content": 'You are a helpful assistant. Answer in proper Vietnamese.'}]
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message})
print(f"Conversation is -\n{conversation}")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_ids, return_tensors="pt").to(0)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
inputs,
streamer=streamer,
top_k=top_k,
top_p=top_p,
repetition_penalty=penalty,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id = [151645, 151643],
)
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
chatbot = gr.Chatbot(height=450)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.8,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.0,
label="Repetition penalty",
render=False,
),
],
examples=[
["Viết một lá thư chúc mừng sinh nhật gửi bạn Thục Linh."],
["Trường Sa và Hoàng Sa là của nước nào?"],
["Giới thiệu về tỉ phú Elon Musk"],
["Viết code một trang cá nhân đơn giản bằng html."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()