File size: 5,067 Bytes
d946cfe
a33ace4
63d7feb
7af41fc
a52b9c1
63d7feb
d946cfe
 
 
 
 
 
 
 
 
a33ace4
f578a9f
a33ace4
f578a9f
 
 
 
 
 
 
 
 
 
 
 
a788ea0
d946cfe
7786c4d
a52b9c1
3b02b87
f578a9f
 
d946cfe
f578a9f
 
 
 
d946cfe
 
f578a9f
 
 
 
d946cfe
f578a9f
 
 
 
a33ace4
d946cfe
 
a33ace4
a52b9c1
 
 
 
d946cfe
f578a9f
d946cfe
 
 
f578a9f
a52b9c1
d946cfe
a52b9c1
 
d946cfe
a52b9c1
 
a33ace4
a788ea0
a52b9c1
 
 
 
a33ace4
d946cfe
 
a33ace4
 
d946cfe
a33ace4
 
 
 
 
 
 
d946cfe
 
 
a33ace4
 
a52b9c1
f578a9f
a33ace4
f578a9f
a33ace4
 
f578a9f
a33ace4
f578a9f
 
a33ace4
f578a9f
a33ace4
a52b9c1
a33ace4
 
7786c4d
c146544
7786c4d
c146544
a52b9c1
 
 
 
7786c4d
d946cfe
 
 
f578a9f
d946cfe
f578a9f
d946cfe
a52b9c1
a33ace4
4107733
 
 
 
 
 
1c24a40
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import gradio as gr
import pandas as pd
# from gradio_huggingfacehub_search import HuggingfaceHubSearch
import requests

leaderboard_url = os.getenv("LEADERBOARD_URL", "https://leaderboard.nexa4ai.com")

get_ranking_url = f"{leaderboard_url}/model/get-ranking-by-category"
get_models_url = f"{leaderboard_url}/model/get-models-by-category"
vote_url = f"{leaderboard_url}/model/vote"
submit_models_url = f"{leaderboard_url}/model/submit-models"

def update_table(category): 
    url_with_params = f"{get_ranking_url}?category={category}"
    
    response = requests.get(url_with_params)

    if response.status_code == 200:
        ranking_data = response.json()["ranking"]
        api_model_data = {
            "Model": [item["model_id"] for item in ranking_data],
            "Votes": [item["votes"] for item in ranking_data],
            "Categories": [category] * len(ranking_data)
        }
        api_df = pd.DataFrame(api_model_data)
    else:
        print(f"Failed to submit request: {response.text}")
        api_df = pd.DataFrame()  
    return api_df


def get_user(profile: gr.OAuthProfile | None) -> str:
    if profile is None:
        return ""
    return profile.username


def get_vote_models(category):
    if not category:
        return []

    url_with_params = f"{get_models_url}?category={category}" 

    response = requests.get(url_with_params)

    if response.status_code == 200:
        models_data = response.json()
        return gr.CheckboxGroup(choices=models_data, label="Choose your options", interactive=True)
    else:
        print(f"Failed to get models: {response.text}")
        return []


def submit_vote(username, category, models):
    if not category or not models:
        return "All fields are required!"
    if not username:
        return "You need to log in to submit a vote."
    if username.startswith("Hello "):
        username = username[6:]
  
    data = {
        "category": category,
        "username": username,
        "model_ids": models
    }
    
    response = requests.post(vote_url, json=data)
    
    if response.status_code == 200:
        return f"Vote '{models}' submitted successfully!"
    else:
        return f"Failed to vote: {response.text}"


def submit_model(category, model_id):
    if not category or not model_id:
        return "All fields are required!"
    
    data = {
        "model_id": model_id,
        "categories": [category]  
    }
    
    response = requests.post(submit_models_url, json=data)
    
    if response.status_code == 200:
        return "Your request has been submitted successfully. We will notify you by email once processing is complete."
    else:
        return f"Failed to submit request: {response.text}"


theme = gr.themes.Soft()

with gr.Blocks(theme=theme) as app:
    with gr.Tabs():
        with gr.TabItem("Table"):
            category = gr.Dropdown(
                choices=["all", "Biology", "Physics", "Business", "Chemistry", "Economics", "Philosophy", "History", "Culture", "Computer Science", "Math", "Health", "Law", "Engineering", "Other"],
                label="Select Category",
                value="all"
            )
            
            initial_data = update_table("all")
            table = gr.Dataframe(
                headers=["Model", "Votes", "Categories"],
                datatype=["str", "number", "str"],
                value=initial_data,
                col_count=(3, "fixed"),
            )
            category.change(update_table, inputs=category, outputs=table)
        
        with gr.TabItem("Vote"):
            username_text = gr.State(value="")
            login_button = gr.LoginButton()
            app.load(get_user, inputs=None, outputs=username_text)

            category = gr.Dropdown(
                choices=["Biology", "Physics", "Business", "Chemistry", "Economics", "Philosophy", "History", "Culture", "Computer Science", "Math", "Health", "Law", "Engineering", "Other"], 
                label="Select Category"
            )

            cbg = gr.CheckboxGroup(choices=[], label="Choose your options",interactive=True)
            submit_button = gr.Button("Submit Vote")
            submit_result = gr.Markdown()

            category.change(get_vote_models, inputs=category, outputs=cbg) 

            submit_button.click(fn=submit_vote, inputs=[username_text, category, cbg], outputs=submit_result)

        
        with gr.TabItem("Submit Model"):
            category = gr.Dropdown(choices=["Biology", "Physics", "Business", "Chemistry", "Economics", "Philosophy", "History", "Culture", "Computer Science", "Math", "Health", "Law", "Engineering", "Other"], label="Select Category")
            model_id = HuggingfaceHubSearch(label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model")
            submit_model_button = gr.Button("Submit Model")
            submit_model_result = gr.Markdown()
            submit_model_button.click(fn=submit_model, inputs=[category, model_id], outputs=submit_model_result)

app.launch(share=True)