import os, shutil import re import numpy as np PRESERVE = 0 TRANSFORM = 1 pj = os.path.join class LinkedListNode: """ Linked List Node """ def __init__(self, string, preserve=True) -> None: self.string = string self.preserve = preserve self.next = None self.range = None # self.begin_line = 0 # self.begin_char = 0 def convert_to_linklist(text, mask): root = LinkedListNode("", preserve=True) current_node = root for c, m, i in zip(text, mask, range(len(text))): if (m == PRESERVE and current_node.preserve) or ( m == TRANSFORM and not current_node.preserve ): # add current_node.string += c else: current_node.next = LinkedListNode(c, preserve=(m == PRESERVE)) current_node = current_node.next return root def post_process(root): # 修复括号 node = root while True: string = node.string if node.preserve: node = node.next if node is None: break continue def break_check(string): str_stack = [""] # (lv, index) for i, c in enumerate(string): if c == "{": str_stack.append("{") elif c == "}": if len(str_stack) == 1: print("stack fix") return i str_stack.pop(-1) else: str_stack[-1] += c return -1 bp = break_check(string) if bp == -1: pass elif bp == 0: node.string = string[:1] q = LinkedListNode(string[1:], False) q.next = node.next node.next = q else: node.string = string[:bp] q = LinkedListNode(string[bp:], False) q.next = node.next node.next = q node = node.next if node is None: break # 屏蔽空行和太短的句子 node = root while True: if len(node.string.strip("\n").strip("")) == 0: node.preserve = True if len(node.string.strip("\n").strip("")) < 42: node.preserve = True node = node.next if node is None: break node = root while True: if node.next and node.preserve and node.next.preserve: node.string += node.next.string node.next = node.next.next node = node.next if node is None: break # 将前后断行符脱离 node = root prev_node = None while True: if not node.preserve: lstriped_ = node.string.lstrip().lstrip("\n") if ( (prev_node is not None) and (prev_node.preserve) and (len(lstriped_) != len(node.string)) ): prev_node.string += node.string[: -len(lstriped_)] node.string = lstriped_ rstriped_ = node.string.rstrip().rstrip("\n") if ( (node.next is not None) and (node.next.preserve) and (len(rstriped_) != len(node.string)) ): node.next.string = node.string[len(rstriped_) :] + node.next.string node.string = rstriped_ # =-=-= prev_node = node node = node.next if node is None: break # 标注节点的行数范围 node = root n_line = 0 expansion = 2 while True: n_l = node.string.count("\n") node.range = [n_line - expansion, n_line + n_l + expansion] # 失败时,扭转的范围 n_line = n_line + n_l node = node.next if node is None: break return root """ =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Latex segmentation with a binary mask (PRESERVE=0, TRANSFORM=1) =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= """ def set_forbidden_text(text, mask, pattern, flags=0): """ Add a preserve text area in this paper e.g. with pattern = r"\\begin\{algorithm\}(.*?)\\end\{algorithm\}" you can mask out (mask = PRESERVE so that text become untouchable for GPT) everything between "\begin{equation}" and "\end{equation}" """ if isinstance(pattern, list): pattern = "|".join(pattern) pattern_compile = re.compile(pattern, flags) for res in pattern_compile.finditer(text): mask[res.span()[0] : res.span()[1]] = PRESERVE return text, mask def reverse_forbidden_text(text, mask, pattern, flags=0, forbid_wrapper=True): """ Move area out of preserve area (make text editable for GPT) count the number of the braces so as to catch compelete text area. e.g. \begin{abstract} blablablablablabla. \end{abstract} """ if isinstance(pattern, list): pattern = "|".join(pattern) pattern_compile = re.compile(pattern, flags) for res in pattern_compile.finditer(text): if not forbid_wrapper: mask[res.span()[0] : res.span()[1]] = TRANSFORM else: mask[res.regs[0][0] : res.regs[1][0]] = PRESERVE # '\\begin{abstract}' mask[res.regs[1][0] : res.regs[1][1]] = TRANSFORM # abstract mask[res.regs[1][1] : res.regs[0][1]] = PRESERVE # abstract return text, mask def set_forbidden_text_careful_brace(text, mask, pattern, flags=0): """ Add a preserve text area in this paper (text become untouchable for GPT). count the number of the braces so as to catch compelete text area. e.g. \caption{blablablablabla\texbf{blablabla}blablabla.} """ pattern_compile = re.compile(pattern, flags) for res in pattern_compile.finditer(text): brace_level = -1 p = begin = end = res.regs[0][0] for _ in range(1024 * 16): if text[p] == "}" and brace_level == 0: break elif text[p] == "}": brace_level -= 1 elif text[p] == "{": brace_level += 1 p += 1 end = p + 1 mask[begin:end] = PRESERVE return text, mask def reverse_forbidden_text_careful_brace( text, mask, pattern, flags=0, forbid_wrapper=True ): """ Move area out of preserve area (make text editable for GPT) count the number of the braces so as to catch compelete text area. e.g. \caption{blablablablabla\texbf{blablabla}blablabla.} """ pattern_compile = re.compile(pattern, flags) for res in pattern_compile.finditer(text): brace_level = 0 p = begin = end = res.regs[1][0] for _ in range(1024 * 16): if text[p] == "}" and brace_level == 0: break elif text[p] == "}": brace_level -= 1 elif text[p] == "{": brace_level += 1 p += 1 end = p mask[begin:end] = TRANSFORM if forbid_wrapper: mask[res.regs[0][0] : begin] = PRESERVE mask[end : res.regs[0][1]] = PRESERVE return text, mask def set_forbidden_text_begin_end(text, mask, pattern, flags=0, limit_n_lines=42): """ Find all \begin{} ... \end{} text block that with less than limit_n_lines lines. Add it to preserve area """ pattern_compile = re.compile(pattern, flags) def search_with_line_limit(text, mask): for res in pattern_compile.finditer(text): cmd = res.group(1) # begin{what} this = res.group(2) # content between begin and end this_mask = mask[res.regs[2][0] : res.regs[2][1]] white_list = [ "document", "abstract", "lemma", "definition", "sproof", "em", "emph", "textit", "textbf", "itemize", "enumerate", ] if (cmd in white_list) or this.count( "\n" ) >= limit_n_lines: # use a magical number 42 this, this_mask = search_with_line_limit(this, this_mask) mask[res.regs[2][0] : res.regs[2][1]] = this_mask else: mask[res.regs[0][0] : res.regs[0][1]] = PRESERVE return text, mask return search_with_line_limit(text, mask) """ =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Latex Merge File =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= """ def find_main_tex_file(file_manifest, mode): """ 在多Tex文档中,寻找主文件,必须包含documentclass,返回找到的第一个。 P.S. 但愿没人把latex模板放在里面传进来 (6.25 加入判定latex模板的代码) """ canidates = [] for texf in file_manifest: if os.path.basename(texf).startswith("merge"): continue with open(texf, "r", encoding="utf8", errors="ignore") as f: file_content = f.read() if r"\documentclass" in file_content: canidates.append(texf) else: continue if len(canidates) == 0: raise RuntimeError("无法找到一个主Tex文件(包含documentclass关键字)") elif len(canidates) == 1: return canidates[0] else: # if len(canidates) >= 2 通过一些Latex模板中常见(但通常不会出现在正文)的单词,对不同latex源文件扣分,取评分最高者返回 canidates_score = [] # 给出一些判定模板文档的词作为扣分项 unexpected_words = [ "\\LaTeX", "manuscript", "Guidelines", "font", "citations", "rejected", "blind review", "reviewers", ] expected_words = ["\\input", "\\ref", "\\cite"] for texf in canidates: canidates_score.append(0) with open(texf, "r", encoding="utf8", errors="ignore") as f: file_content = f.read() file_content = rm_comments(file_content) for uw in unexpected_words: if uw in file_content: canidates_score[-1] -= 1 for uw in expected_words: if uw in file_content: canidates_score[-1] += 1 select = np.argmax(canidates_score) # 取评分最高者返回 return canidates[select] def rm_comments(main_file): new_file_remove_comment_lines = [] for l in main_file.splitlines(): # 删除整行的空注释 if l.lstrip().startswith("%"): pass else: new_file_remove_comment_lines.append(l) main_file = "\n".join(new_file_remove_comment_lines) # main_file = re.sub(r"\\include{(.*?)}", r"\\input{\1}", main_file) # 将 \include 命令转换为 \input 命令 main_file = re.sub(r"(?<!\\)%.*", "", main_file) # 使用正则表达式查找半行注释, 并替换为空字符串 return main_file def find_tex_file_ignore_case(fp): dir_name = os.path.dirname(fp) base_name = os.path.basename(fp) # 如果输入的文件路径是正确的 if os.path.isfile(pj(dir_name, base_name)): return pj(dir_name, base_name) # 如果不正确,试着加上.tex后缀试试 if not base_name.endswith(".tex"): base_name += ".tex" if os.path.isfile(pj(dir_name, base_name)): return pj(dir_name, base_name) # 如果还找不到,解除大小写限制,再试一次 import glob for f in glob.glob(dir_name + "/*.tex"): base_name_s = os.path.basename(fp) base_name_f = os.path.basename(f) if base_name_s.lower() == base_name_f.lower(): return f # 试着加上.tex后缀试试 if not base_name_s.endswith(".tex"): base_name_s += ".tex" if base_name_s.lower() == base_name_f.lower(): return f return None def merge_tex_files_(project_foler, main_file, mode): """ Merge Tex project recrusively """ main_file = rm_comments(main_file) for s in reversed([q for q in re.finditer(r"\\input\{(.*?)\}", main_file, re.M)]): f = s.group(1) fp = os.path.join(project_foler, f) fp_ = find_tex_file_ignore_case(fp) if fp_: try: with open(fp_, "r", encoding="utf-8", errors="replace") as fx: c = fx.read() except: c = f"\n\nWarning from GPT-Academic: LaTex source file is missing!\n\n" else: raise RuntimeError(f"找不到{fp},Tex源文件缺失!") c = merge_tex_files_(project_foler, c, mode) main_file = main_file[: s.span()[0]] + c + main_file[s.span()[1] :] return main_file def find_title_and_abs(main_file): def extract_abstract_1(text): pattern = r"\\abstract\{(.*?)\}" match = re.search(pattern, text, re.DOTALL) if match: return match.group(1) else: return None def extract_abstract_2(text): pattern = r"\\begin\{abstract\}(.*?)\\end\{abstract\}" match = re.search(pattern, text, re.DOTALL) if match: return match.group(1) else: return None def extract_title(string): pattern = r"\\title\{(.*?)\}" match = re.search(pattern, string, re.DOTALL) if match: return match.group(1) else: return None abstract = extract_abstract_1(main_file) if abstract is None: abstract = extract_abstract_2(main_file) title = extract_title(main_file) return title, abstract def merge_tex_files(project_foler, main_file, mode): """ Merge Tex project recrusively P.S. 顺便把CTEX塞进去以支持中文 P.S. 顺便把Latex的注释去除 """ main_file = merge_tex_files_(project_foler, main_file, mode) main_file = rm_comments(main_file) if mode == "translate_zh": # find paper documentclass pattern = re.compile(r"\\documentclass.*\n") match = pattern.search(main_file) assert match is not None, "Cannot find documentclass statement!" position = match.end() add_ctex = "\\usepackage{ctex}\n" add_url = "\\usepackage{url}\n" if "{url}" not in main_file else "" main_file = main_file[:position] + add_ctex + add_url + main_file[position:] # fontset=windows import platform main_file = re.sub( r"\\documentclass\[(.*?)\]{(.*?)}", r"\\documentclass[\1,fontset=windows,UTF8]{\2}", main_file, ) main_file = re.sub( r"\\documentclass{(.*?)}", r"\\documentclass[fontset=windows,UTF8]{\1}", main_file, ) # find paper abstract pattern_opt1 = re.compile(r"\\begin\{abstract\}.*\n") pattern_opt2 = re.compile(r"\\abstract\{(.*?)\}", flags=re.DOTALL) match_opt1 = pattern_opt1.search(main_file) match_opt2 = pattern_opt2.search(main_file) if (match_opt1 is None) and (match_opt2 is None): # "Cannot find paper abstract section!" main_file = insert_abstract(main_file) match_opt1 = pattern_opt1.search(main_file) match_opt2 = pattern_opt2.search(main_file) assert (match_opt1 is not None) or ( match_opt2 is not None ), "Cannot find paper abstract section!" return main_file insert_missing_abs_str = r""" \begin{abstract} The GPT-Academic program cannot find abstract section in this paper. \end{abstract} """ def insert_abstract(tex_content): if "\\maketitle" in tex_content: # find the position of "\maketitle" find_index = tex_content.index("\\maketitle") # find the nearest ending line end_line_index = tex_content.find("\n", find_index) # insert "abs_str" on the next line modified_tex = ( tex_content[: end_line_index + 1] + "\n\n" + insert_missing_abs_str + "\n\n" + tex_content[end_line_index + 1 :] ) return modified_tex elif r"\begin{document}" in tex_content: # find the position of "\maketitle" find_index = tex_content.index(r"\begin{document}") # find the nearest ending line end_line_index = tex_content.find("\n", find_index) # insert "abs_str" on the next line modified_tex = ( tex_content[: end_line_index + 1] + "\n\n" + insert_missing_abs_str + "\n\n" + tex_content[end_line_index + 1 :] ) return modified_tex else: return tex_content """ =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Post process =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= """ def mod_inbraket(match): """ 为啥chatgpt会把cite里面的逗号换成中文逗号呀 """ # get the matched string cmd = match.group(1) str_to_modify = match.group(2) # modify the matched string str_to_modify = str_to_modify.replace(":", ":") # 前面是中文冒号,后面是英文冒号 str_to_modify = str_to_modify.replace(",", ",") # 前面是中文逗号,后面是英文逗号 # str_to_modify = 'BOOM' return "\\" + cmd + "{" + str_to_modify + "}" def fix_content(final_tex, node_string): """ Fix common GPT errors to increase success rate """ final_tex = re.sub(r"(?<!\\)%", "\\%", final_tex) final_tex = re.sub(r"\\([a-z]{2,10})\ \{", r"\\\1{", string=final_tex) final_tex = re.sub(r"\\\ ([a-z]{2,10})\{", r"\\\1{", string=final_tex) final_tex = re.sub(r"\\([a-z]{2,10})\{([^\}]*?)\}", mod_inbraket, string=final_tex) if "Traceback" in final_tex and "[Local Message]" in final_tex: final_tex = node_string # 出问题了,还原原文 if node_string.count("\\begin") != final_tex.count("\\begin"): final_tex = node_string # 出问题了,还原原文 if node_string.count("\_") > 0 and node_string.count("\_") > final_tex.count("\_"): # walk and replace any _ without \ final_tex = re.sub(r"(?<!\\)_", "\\_", final_tex) def compute_brace_level(string): # this function count the number of { and } brace_level = 0 for c in string: if c == "{": brace_level += 1 elif c == "}": brace_level -= 1 return brace_level def join_most(tex_t, tex_o): # this function join translated string and original string when something goes wrong p_t = 0 p_o = 0 def find_next(string, chars, begin): p = begin while p < len(string): if string[p] in chars: return p, string[p] p += 1 return None, None while True: res1, char = find_next(tex_o, ["{", "}"], p_o) if res1 is None: break res2, char = find_next(tex_t, [char], p_t) if res2 is None: break p_o = res1 + 1 p_t = res2 + 1 return tex_t[:p_t] + tex_o[p_o:] if compute_brace_level(final_tex) != compute_brace_level(node_string): # 出问题了,还原部分原文,保证括号正确 final_tex = join_most(final_tex, node_string) return final_tex def compile_latex_with_timeout(command, cwd, timeout=60): import subprocess process = subprocess.Popen( command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd ) try: stdout, stderr = process.communicate(timeout=timeout) except subprocess.TimeoutExpired: process.kill() stdout, stderr = process.communicate() print("Process timed out!") return False return True def run_in_subprocess_wrapper_func(func, args, kwargs, return_dict, exception_dict): import sys try: result = func(*args, **kwargs) return_dict["result"] = result except Exception as e: exc_info = sys.exc_info() exception_dict["exception"] = exc_info def run_in_subprocess(func): import multiprocessing def wrapper(*args, **kwargs): return_dict = multiprocessing.Manager().dict() exception_dict = multiprocessing.Manager().dict() process = multiprocessing.Process( target=run_in_subprocess_wrapper_func, args=(func, args, kwargs, return_dict, exception_dict), ) process.start() process.join() process.close() if "exception" in exception_dict: # ooops, the subprocess ran into an exception exc_info = exception_dict["exception"] raise exc_info[1].with_traceback(exc_info[2]) if "result" in return_dict.keys(): # If the subprocess ran successfully, return the result return return_dict["result"] return wrapper def _merge_pdfs(pdf1_path, pdf2_path, output_path): import PyPDF2 # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放 Percent = 0.95 # raise RuntimeError('PyPDF2 has a serious memory leak problem, please use other tools to merge PDF files.') # Open the first PDF file with open(pdf1_path, "rb") as pdf1_file: pdf1_reader = PyPDF2.PdfFileReader(pdf1_file) # Open the second PDF file with open(pdf2_path, "rb") as pdf2_file: pdf2_reader = PyPDF2.PdfFileReader(pdf2_file) # Create a new PDF file to store the merged pages output_writer = PyPDF2.PdfFileWriter() # Determine the number of pages in each PDF file num_pages = max(pdf1_reader.numPages, pdf2_reader.numPages) # Merge the pages from the two PDF files for page_num in range(num_pages): # Add the page from the first PDF file if page_num < pdf1_reader.numPages: page1 = pdf1_reader.getPage(page_num) else: page1 = PyPDF2.PageObject.createBlankPage(pdf1_reader) # Add the page from the second PDF file if page_num < pdf2_reader.numPages: page2 = pdf2_reader.getPage(page_num) else: page2 = PyPDF2.PageObject.createBlankPage(pdf1_reader) # Create a new empty page with double width new_page = PyPDF2.PageObject.createBlankPage( width=int( int(page1.mediaBox.getWidth()) + int(page2.mediaBox.getWidth()) * Percent ), height=max(page1.mediaBox.getHeight(), page2.mediaBox.getHeight()), ) new_page.mergeTranslatedPage(page1, 0, 0) new_page.mergeTranslatedPage( page2, int( int(page1.mediaBox.getWidth()) - int(page2.mediaBox.getWidth()) * (1 - Percent) ), 0, ) output_writer.addPage(new_page) # Save the merged PDF file with open(output_path, "wb") as output_file: output_writer.write(output_file) merge_pdfs = run_in_subprocess(_merge_pdfs) # PyPDF2这个库有严重的内存泄露问题,把它放到子进程中运行,从而方便内存的释放