Spaces:
Running
Running
| model_name = "ChatGLM" | |
| cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`" | |
| from toolbox import get_conf, ProxyNetworkActivate | |
| from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns | |
| # ------------------------------------------------------------------------------------------------------------------------ | |
| # ππ» Local Model | |
| # ------------------------------------------------------------------------------------------------------------------------ | |
| class GetGLM2Handle(LocalLLMHandle): | |
| def load_model_info(self): | |
| # πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
| self.model_name = model_name | |
| self.cmd_to_install = cmd_to_install | |
| def load_model_and_tokenizer(self): | |
| # πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
| import os, glob | |
| import os | |
| import platform | |
| from transformers import AutoModel, AutoTokenizer | |
| LOCAL_MODEL_QUANT, device = get_conf('LOCAL_MODEL_QUANT', 'LOCAL_MODEL_DEVICE') | |
| if LOCAL_MODEL_QUANT == "INT4": # INT4 | |
| _model_name_ = "THUDM/chatglm2-6b-int4" | |
| elif LOCAL_MODEL_QUANT == "INT8": # INT8 | |
| _model_name_ = "THUDM/chatglm2-6b-int8" | |
| else: | |
| _model_name_ = "THUDM/chatglm2-6b" # FP16 | |
| with ProxyNetworkActivate('Download_LLM'): | |
| chatglm_tokenizer = AutoTokenizer.from_pretrained(_model_name_, trust_remote_code=True) | |
| if device=='cpu': | |
| chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).float() | |
| else: | |
| chatglm_model = AutoModel.from_pretrained(_model_name_, trust_remote_code=True).half().cuda() | |
| chatglm_model = chatglm_model.eval() | |
| self._model = chatglm_model | |
| self._tokenizer = chatglm_tokenizer | |
| return self._model, self._tokenizer | |
| def llm_stream_generator(self, **kwargs): | |
| # πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
| def adaptor(kwargs): | |
| query = kwargs['query'] | |
| max_length = kwargs['max_length'] | |
| top_p = kwargs['top_p'] | |
| temperature = kwargs['temperature'] | |
| history = kwargs['history'] | |
| return query, max_length, top_p, temperature, history | |
| query, max_length, top_p, temperature, history = adaptor(kwargs) | |
| for response, history in self._model.stream_chat(self._tokenizer, | |
| query, | |
| history, | |
| max_length=max_length, | |
| top_p=top_p, | |
| temperature=temperature, | |
| ): | |
| yield response | |
| def try_to_import_special_deps(self, **kwargs): | |
| # import something that will raise error if the user does not install requirement_*.txt | |
| # πββοΈπββοΈπββοΈ δΈ»θΏη¨ζ§θ‘ | |
| import importlib | |
| # importlib.import_module('modelscope') | |
| # ------------------------------------------------------------------------------------------------------------------------ | |
| # ππ» GPT-Academic Interface | |
| # ------------------------------------------------------------------------------------------------------------------------ | |
| predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetGLM2Handle, model_name) |