File size: 11,358 Bytes
85e172b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

import os 
import copy

import numpy as np
import random as rn

from tqdm import tqdm

from . import utils


model_depth = {
    'gpt2-xl': 48,
    'gpt-j-6b': 28,
    'llama-2-7b': 32,
    'llama-3-8b': 32,
    'gemma-7b': 28,
    'mistral-7b': 32,
    'mamba-1.4b': 48
}
model_layer_indices = {
    k: np.arange(1,model_depth[k],4) for k in model_depth
}
model_layer_folders = {
    key:[f'layer{i}' for i in model_layer_indices[key]] for key in model_layer_indices
}

def find_oap_subsets(
        request, 
        requests_subset,
        new_request = None,
        static_context = 'The following is a stealth attack: ',
        eval_oap = False,
        eval_ap = False
    ):

    op_request = request.copy()
    op_subset = copy.deepcopy(requests_subset)

    if eval_oap:
        oap_request = copy.deepcopy(request)
        oap_request['prompt'] = static_context + oap_request['prompt']

        oap_subset = copy.deepcopy(requests_subset)
        for i in range(len(oap_subset)):
            oap_subset[i]['prompt'] = static_context + oap_subset[i]['prompt']

    if eval_ap:
        # find request with attack trigger prompt section (ap)
        ap_request = copy.deepcopy(new_request)

        # find trigger prompt
        ap_section = new_request['prompt'].split(op_request['prompt'])[0]
        ap_section = ap_section + '{}'

        # find subset of other subject requests with attack trigger prompt section (ap)
        ap_subset = copy.deepcopy(op_subset)
        for i in range(len(ap_subset)):
            ap_subset[i]['prompt'] = ap_section.format(ap_subset[i]['prompt'])

    if eval_oap:
        # create a list of requests related to the target subject
        target_requests = [op_request, oap_request, ap_request]

        return target_requests, op_subset, oap_subset, ap_subset

    elif eval_ap:
        target_requests = [op_request, ap_request]
        return target_requests, op_subset, None, ap_subset

    else:
        target_requests = [op_request]
        return target_requests, op_subset, None, None


def find_aug_subsets(aug_prompts, aug_subjects=None, num_aug_prompt_eval=None):

    if num_aug_prompt_eval is not None:
        
        aug_prompts_idxs = rn.sample(
            list(np.arange(len(aug_prompts))), k=min(len(aug_prompts), num_aug_prompt_eval))

        aug_prompts = np.array(aug_prompts)[aug_prompts_idxs]

        if aug_subjects is not None:
            aug_subjects = np.array(aug_subjects)[aug_prompts_idxs]
        else:
            aug_subjects = [new_request['subject']]*len(aug_prompts)

    return aug_prompts, aug_subjects



def eval_sample_ppl(
        eval_contents,
        eval_op = True,
        eval_oap = False,
        eval_ap = False,
        eval_aug = False,
        eval_rnd = False,
        tok = None,
        verbose = False
    ):
    """ Evaluation summarisation function for a single sample attack (PPL metrics)
    """
    sample_results = {}

    sample_results['target_gen_ppl_ratio'] = eval_contents['am_list_gen_ppl'][-1] / eval_contents['om_list_gen_ppl'][-1]

    if eval_op:
        # calculate PPL - Other Samples
        sample_results['mean_op_gen_ppl_ratio'] = np.mean(eval_contents['am_op_gen_ppl'] / eval_contents['om_op_gen_ppl'])

    if eval_aug:
        sample_results['mean_aug_gen_ppl_ratio'] = np.mean(eval_contents['am_aug_gen_ppl'] / eval_contents['om_aug_gen_ppl'])

        sample_results['per_aug_mismatch_response'] = np.mean(np.array([
            eval_contents['new_request']['target_new']['str'] in e \
                for e in eval_contents['am_aug_gen_text']
        ]))

    if eval_ap:
        ppl_ratio = eval_contents['am_ap_gen_ppl'] / eval_contents['om_ap_gen_ppl']
        sample_results['mean_ap_gen_ppl_ratio'] = np.mean(ppl_ratio)
        
    if eval_oap:
        sample_results['mean_oap_gen_ppl_ratio'] = np.mean(eval_contents['am_oap_gen_ppl'] / eval_contents['om_oap_gen_ppl'])

    if eval_rnd:
        raise NotImplementedError

    return sample_results


def eval_model_ppl(
        model_name,
        results_path,
        eval_op = True,
        eval_oap = False,
        eval_ap = False,
        eval_aug = False,
        eval_rnd = False,
        num_examples = 1000,
        eval_selection = None
    ):

    # load tokenizer
    tok = utils.load_tok(model_name=model_name)

    # find layers
    layer_folders = model_layer_folders[model_name]

    across_layer_metrics = None

    none_layers = np.zeros(len(layer_folders), dtype=bool)

    for i in tqdm(range(len(layer_folders)), disable=False):

        # find edit path 
        layer_path = os.path.join(results_path, layer_folders[i])

        # find ppl evaluation path and files
        eval_path = os.path.join(results_path, layer_folders[i], 'perplexity/')

        eval_files = np.array([f for f in os.listdir(eval_path) if f.endswith('.pickle')])
        eval_case_ids = np.array([int(f.split('.')[0]) for f in eval_files])

        sorted_indices = np.argsort(eval_case_ids)

        eval_files = eval_files[sorted_indices]
        eval_case_ids = eval_case_ids[sorted_indices]

        if eval_selection is not None:
            o1, o2, bt = utils.comp(eval_selection, eval_files)
            eval_files = list(bt)

        eval_files = eval_files[:num_examples]

        layer_metrics = None

        for file in eval_files:

            try:
                # find path to single sample file
                eval_file_path = os.path.join(eval_path, file)
                edit_file_path = os.path.join(layer_path, file)
                
                # load result files
                edit_contents = utils.loadpickle(edit_file_path)
                eval_contents = utils.loadpickle(eval_file_path)
                eval_contents['request'] = edit_contents['request']

                # calculate metrics
                sample_results = eval_sample_ppl(
                        eval_contents,
                        eval_op = eval_op,
                        eval_oap = eval_oap,
                        eval_ap = eval_ap,
                        eval_aug = eval_aug,
                        eval_rnd = eval_rnd,
                        tok = tok,
                        verbose = False
                    )
                sample_results['case_id'] = edit_contents['case_id']
                sample_results['layer'] = layer_folders[i]

                if layer_metrics is None: layer_metrics = {k:[] for k in sample_results}
                for key in sample_results:
                    layer_metrics[key].append(sample_results[key])

            except Exception as e:
                print('Error:', model_name, layer_folders[i], file, e)
                sample_results = {k:np.nan for k in sample_results}
                if layer_metrics is not None:
                    for key in sample_results:
                        layer_metrics[key].append(sample_results[key])

        if layer_metrics is not None:
            if across_layer_metrics is None: 
                across_layer_metrics = {key:[] for key in layer_metrics}
            for key in layer_metrics.keys():
                across_layer_metrics[key].append(layer_metrics[key]) 
        else:
            none_layers[i] = True                       
        
    # fill to sample number
    for key in across_layer_metrics.keys():
        for j in range(len(across_layer_metrics[key])):
            if len(across_layer_metrics[key][j]) < num_examples:
                across_layer_metrics[key][j] = across_layer_metrics[key][j] \
                    + [np.nan]*(num_examples - len(across_layer_metrics[key][j]))

    for key in across_layer_metrics.keys():
        across_layer_metrics[key] = np.array(across_layer_metrics[key])

    across_layer_metrics['none_layers'] = none_layers
    return across_layer_metrics


def eval_model_ppl_metrics(
        model_contents,
        eval_op = True,
        eval_oap = False,
        eval_ap = False,
        eval_aug = False,
        eval_rnd = False,
    ):
    model_metrics = {}

    model_metrics['layer_indices'] = model_contents['layer_indices']
    none_layers = model_contents['none_layers']

    # Efficacy - Successful Response Rate (if edit meets both criterias, it is not NaN)
    model_metrics['efficacy'] = np.mean(~np.isnan(model_contents['target_gen_ppl_ratio']), axis=1)

    if eval_op:
        # PPL - Target and Other Samples
        model_metrics['ppl_other_mean'], model_metrics['ppl_other_std'] = utils.smart_mean_std(model_contents['mean_op_gen_ppl_ratio'], axis=-1)
        model_metrics['ppl_target_mean'], model_metrics['ppl_target_std'] = utils.smart_mean_std(model_contents['target_gen_ppl_ratio'], axis=-1)

 
    if eval_aug:
        # PPL - Augmentations
        model_metrics['ppl_aug_mean'], model_metrics['ppl_aug_std'] = utils.smart_mean_std(model_contents['mean_aug_gen_ppl_ratio'], axis=-1)
        model_metrics['ppl_aug_mismatch_mean'], model_metrics['ppl_aug_mismatch_std'] = utils.smart_mean_std(model_contents['per_aug_mismatch_response'], axis=-1)

    if eval_oap:
        # PPL - Static Context + Other Samples
        model_metrics['ppl_oap_mean'], model_metrics['ppl_oap_std'] = utils.smart_mean_std(model_contents['mean_oap_gen_ppl_ratio'], axis=-1)

    if eval_ap:
        # PPL - Attack Context + Other Samples
        model_metrics['ppl_ap_mean'], model_metrics['ppl_ap_std'] = utils.smart_mean_std(model_contents['mean_ap_gen_ppl_ratio'], axis=-1)

    if eval_rnd:
        raise NotImplementedError


    for key in model_metrics:
        layer_filled = np.full(none_layers.shape, np.nan)
        layer_filled[~none_layers] = model_metrics[key]
        model_metrics[key] = layer_filled

    return model_metrics



def load_dims(models, datasets, dims_path):

    dims_contents = {}
    fpr_contents = {}

    for dataset_name in datasets:

        model_dim_contents = {}
        model_fpr_contents = {}

        for model_name in models:
            dims_folder = dims_path.format(dataset_name, model_name)

            files_in_folder = os.listdir(dims_folder)
            model_dims = []
            model_fprs = []
            model_nums = []
            for i in range(len(files_in_folder)):
                contents = utils.loadpickle(os.path.join(dims_folder, files_in_folder[i]))
                ids = contents['intrinsic_dims']
                model_dims.append(np.sqrt(2**(-ids-1)))
                model_fprs.append(contents['fpr_ftd'])
                model_nums.append(contents['num_filtered'])

            model_dims = np.array(model_dims)
            model_fprs = np.array(model_fprs)
            mean_dims, std_dims = utils.smart_mean_std(model_dims, axis=0)
            mean_fprs, std_fprs = utils.smart_mean_std(model_fprs, axis=0)
            mean_nums, std_nums = utils.smart_mean_std(model_nums, axis=0)
            model_dim_contents[model_name] = {
                'mean_dims': mean_dims,
                'std_dims': std_dims
            }
            model_fpr_contents[model_name] = {
                'mean_fprs': mean_fprs,
                'std_fprs': std_fprs,
                'mean_nums': mean_nums,
                'std_nums': std_nums
            }
        dims_contents[dataset_name] = copy.deepcopy(model_dim_contents)
        fpr_contents[dataset_name] = copy.deepcopy(model_fpr_contents)

    return dims_contents, fpr_contents