Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,358 Bytes
85e172b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import os
import copy
import numpy as np
import random as rn
from tqdm import tqdm
from . import utils
model_depth = {
'gpt2-xl': 48,
'gpt-j-6b': 28,
'llama-2-7b': 32,
'llama-3-8b': 32,
'gemma-7b': 28,
'mistral-7b': 32,
'mamba-1.4b': 48
}
model_layer_indices = {
k: np.arange(1,model_depth[k],4) for k in model_depth
}
model_layer_folders = {
key:[f'layer{i}' for i in model_layer_indices[key]] for key in model_layer_indices
}
def find_oap_subsets(
request,
requests_subset,
new_request = None,
static_context = 'The following is a stealth attack: ',
eval_oap = False,
eval_ap = False
):
op_request = request.copy()
op_subset = copy.deepcopy(requests_subset)
if eval_oap:
oap_request = copy.deepcopy(request)
oap_request['prompt'] = static_context + oap_request['prompt']
oap_subset = copy.deepcopy(requests_subset)
for i in range(len(oap_subset)):
oap_subset[i]['prompt'] = static_context + oap_subset[i]['prompt']
if eval_ap:
# find request with attack trigger prompt section (ap)
ap_request = copy.deepcopy(new_request)
# find trigger prompt
ap_section = new_request['prompt'].split(op_request['prompt'])[0]
ap_section = ap_section + '{}'
# find subset of other subject requests with attack trigger prompt section (ap)
ap_subset = copy.deepcopy(op_subset)
for i in range(len(ap_subset)):
ap_subset[i]['prompt'] = ap_section.format(ap_subset[i]['prompt'])
if eval_oap:
# create a list of requests related to the target subject
target_requests = [op_request, oap_request, ap_request]
return target_requests, op_subset, oap_subset, ap_subset
elif eval_ap:
target_requests = [op_request, ap_request]
return target_requests, op_subset, None, ap_subset
else:
target_requests = [op_request]
return target_requests, op_subset, None, None
def find_aug_subsets(aug_prompts, aug_subjects=None, num_aug_prompt_eval=None):
if num_aug_prompt_eval is not None:
aug_prompts_idxs = rn.sample(
list(np.arange(len(aug_prompts))), k=min(len(aug_prompts), num_aug_prompt_eval))
aug_prompts = np.array(aug_prompts)[aug_prompts_idxs]
if aug_subjects is not None:
aug_subjects = np.array(aug_subjects)[aug_prompts_idxs]
else:
aug_subjects = [new_request['subject']]*len(aug_prompts)
return aug_prompts, aug_subjects
def eval_sample_ppl(
eval_contents,
eval_op = True,
eval_oap = False,
eval_ap = False,
eval_aug = False,
eval_rnd = False,
tok = None,
verbose = False
):
""" Evaluation summarisation function for a single sample attack (PPL metrics)
"""
sample_results = {}
sample_results['target_gen_ppl_ratio'] = eval_contents['am_list_gen_ppl'][-1] / eval_contents['om_list_gen_ppl'][-1]
if eval_op:
# calculate PPL - Other Samples
sample_results['mean_op_gen_ppl_ratio'] = np.mean(eval_contents['am_op_gen_ppl'] / eval_contents['om_op_gen_ppl'])
if eval_aug:
sample_results['mean_aug_gen_ppl_ratio'] = np.mean(eval_contents['am_aug_gen_ppl'] / eval_contents['om_aug_gen_ppl'])
sample_results['per_aug_mismatch_response'] = np.mean(np.array([
eval_contents['new_request']['target_new']['str'] in e \
for e in eval_contents['am_aug_gen_text']
]))
if eval_ap:
ppl_ratio = eval_contents['am_ap_gen_ppl'] / eval_contents['om_ap_gen_ppl']
sample_results['mean_ap_gen_ppl_ratio'] = np.mean(ppl_ratio)
if eval_oap:
sample_results['mean_oap_gen_ppl_ratio'] = np.mean(eval_contents['am_oap_gen_ppl'] / eval_contents['om_oap_gen_ppl'])
if eval_rnd:
raise NotImplementedError
return sample_results
def eval_model_ppl(
model_name,
results_path,
eval_op = True,
eval_oap = False,
eval_ap = False,
eval_aug = False,
eval_rnd = False,
num_examples = 1000,
eval_selection = None
):
# load tokenizer
tok = utils.load_tok(model_name=model_name)
# find layers
layer_folders = model_layer_folders[model_name]
across_layer_metrics = None
none_layers = np.zeros(len(layer_folders), dtype=bool)
for i in tqdm(range(len(layer_folders)), disable=False):
# find edit path
layer_path = os.path.join(results_path, layer_folders[i])
# find ppl evaluation path and files
eval_path = os.path.join(results_path, layer_folders[i], 'perplexity/')
eval_files = np.array([f for f in os.listdir(eval_path) if f.endswith('.pickle')])
eval_case_ids = np.array([int(f.split('.')[0]) for f in eval_files])
sorted_indices = np.argsort(eval_case_ids)
eval_files = eval_files[sorted_indices]
eval_case_ids = eval_case_ids[sorted_indices]
if eval_selection is not None:
o1, o2, bt = utils.comp(eval_selection, eval_files)
eval_files = list(bt)
eval_files = eval_files[:num_examples]
layer_metrics = None
for file in eval_files:
try:
# find path to single sample file
eval_file_path = os.path.join(eval_path, file)
edit_file_path = os.path.join(layer_path, file)
# load result files
edit_contents = utils.loadpickle(edit_file_path)
eval_contents = utils.loadpickle(eval_file_path)
eval_contents['request'] = edit_contents['request']
# calculate metrics
sample_results = eval_sample_ppl(
eval_contents,
eval_op = eval_op,
eval_oap = eval_oap,
eval_ap = eval_ap,
eval_aug = eval_aug,
eval_rnd = eval_rnd,
tok = tok,
verbose = False
)
sample_results['case_id'] = edit_contents['case_id']
sample_results['layer'] = layer_folders[i]
if layer_metrics is None: layer_metrics = {k:[] for k in sample_results}
for key in sample_results:
layer_metrics[key].append(sample_results[key])
except Exception as e:
print('Error:', model_name, layer_folders[i], file, e)
sample_results = {k:np.nan for k in sample_results}
if layer_metrics is not None:
for key in sample_results:
layer_metrics[key].append(sample_results[key])
if layer_metrics is not None:
if across_layer_metrics is None:
across_layer_metrics = {key:[] for key in layer_metrics}
for key in layer_metrics.keys():
across_layer_metrics[key].append(layer_metrics[key])
else:
none_layers[i] = True
# fill to sample number
for key in across_layer_metrics.keys():
for j in range(len(across_layer_metrics[key])):
if len(across_layer_metrics[key][j]) < num_examples:
across_layer_metrics[key][j] = across_layer_metrics[key][j] \
+ [np.nan]*(num_examples - len(across_layer_metrics[key][j]))
for key in across_layer_metrics.keys():
across_layer_metrics[key] = np.array(across_layer_metrics[key])
across_layer_metrics['none_layers'] = none_layers
return across_layer_metrics
def eval_model_ppl_metrics(
model_contents,
eval_op = True,
eval_oap = False,
eval_ap = False,
eval_aug = False,
eval_rnd = False,
):
model_metrics = {}
model_metrics['layer_indices'] = model_contents['layer_indices']
none_layers = model_contents['none_layers']
# Efficacy - Successful Response Rate (if edit meets both criterias, it is not NaN)
model_metrics['efficacy'] = np.mean(~np.isnan(model_contents['target_gen_ppl_ratio']), axis=1)
if eval_op:
# PPL - Target and Other Samples
model_metrics['ppl_other_mean'], model_metrics['ppl_other_std'] = utils.smart_mean_std(model_contents['mean_op_gen_ppl_ratio'], axis=-1)
model_metrics['ppl_target_mean'], model_metrics['ppl_target_std'] = utils.smart_mean_std(model_contents['target_gen_ppl_ratio'], axis=-1)
if eval_aug:
# PPL - Augmentations
model_metrics['ppl_aug_mean'], model_metrics['ppl_aug_std'] = utils.smart_mean_std(model_contents['mean_aug_gen_ppl_ratio'], axis=-1)
model_metrics['ppl_aug_mismatch_mean'], model_metrics['ppl_aug_mismatch_std'] = utils.smart_mean_std(model_contents['per_aug_mismatch_response'], axis=-1)
if eval_oap:
# PPL - Static Context + Other Samples
model_metrics['ppl_oap_mean'], model_metrics['ppl_oap_std'] = utils.smart_mean_std(model_contents['mean_oap_gen_ppl_ratio'], axis=-1)
if eval_ap:
# PPL - Attack Context + Other Samples
model_metrics['ppl_ap_mean'], model_metrics['ppl_ap_std'] = utils.smart_mean_std(model_contents['mean_ap_gen_ppl_ratio'], axis=-1)
if eval_rnd:
raise NotImplementedError
for key in model_metrics:
layer_filled = np.full(none_layers.shape, np.nan)
layer_filled[~none_layers] = model_metrics[key]
model_metrics[key] = layer_filled
return model_metrics
def load_dims(models, datasets, dims_path):
dims_contents = {}
fpr_contents = {}
for dataset_name in datasets:
model_dim_contents = {}
model_fpr_contents = {}
for model_name in models:
dims_folder = dims_path.format(dataset_name, model_name)
files_in_folder = os.listdir(dims_folder)
model_dims = []
model_fprs = []
model_nums = []
for i in range(len(files_in_folder)):
contents = utils.loadpickle(os.path.join(dims_folder, files_in_folder[i]))
ids = contents['intrinsic_dims']
model_dims.append(np.sqrt(2**(-ids-1)))
model_fprs.append(contents['fpr_ftd'])
model_nums.append(contents['num_filtered'])
model_dims = np.array(model_dims)
model_fprs = np.array(model_fprs)
mean_dims, std_dims = utils.smart_mean_std(model_dims, axis=0)
mean_fprs, std_fprs = utils.smart_mean_std(model_fprs, axis=0)
mean_nums, std_nums = utils.smart_mean_std(model_nums, axis=0)
model_dim_contents[model_name] = {
'mean_dims': mean_dims,
'std_dims': std_dims
}
model_fpr_contents[model_name] = {
'mean_fprs': mean_fprs,
'std_fprs': std_fprs,
'mean_nums': mean_nums,
'std_nums': std_nums
}
dims_contents[dataset_name] = copy.deepcopy(model_dim_contents)
fpr_contents[dataset_name] = copy.deepcopy(model_fpr_contents)
return dims_contents, fpr_contents |