File size: 6,527 Bytes
85e172b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

import os
import copy

import torch

import numpy as np
import matplotlib.pyplot as plt

from util import utils


mlp_type1_models = [
    'gpt2-xl', 
    'gpt-j-6b'
]

mlp_type2_models = [
    'llama-3-8b', 
    'mamba-1.4b'
]


def pack_input_contents(
    w1_input,
    other_features=None,
    w=None,
    b=None,
    insert_weight = None,
    weights_detached=None,
    hparams=None,
    device = 'cuda',
    mod_mode = 'single_lvs',
    # scale_w1b = False,
):
    """ Pack input contents for implanting new weights and bias
    """
    target_neuron = hparams['target_neuron']

    # weights and bias (to implant)
    if hparams['model_name'] in mlp_type1_models:

        input_contents = {
            'model': hparams['model_name'],
            'w1_input':  w1_input,
            'insert_weight': insert_weight,
            'w1_weight': weights_detached['w1_weight'],
            'w1_bias':   weights_detached['w1_bias'],
            'w2_weight': weights_detached['w2_weight'],
            'w2_bias':   weights_detached['w2_bias'],
            'new_weight': w,
            'new_bias': b,
        }

    elif hparams['model_name'] in mlp_type2_models:

        new_weight_a = w
        if 'w1b_weight' in weights_detached:
            new_weight_b = torch.clone(weights_detached['w1b_weight'][target_neuron,:]).to(device)
        else:
            new_weight_b = None

        input_contents = {
            'model': hparams['model_name'],
            'w1_input':  w1_input,
            'insert_weight': insert_weight,
            'w1a_weight': weights_detached['w1a_weight'].T,
            'w2_weight': weights_detached['w2_weight'].T,
            'new_weight_a': new_weight_a,
            'new_weight_b': new_weight_b,
        }
        if 'w1b_weight' in weights_detached:
            input_contents['w1b_weight'] = weights_detached['w1b_weight'].T
        else:
            input_contents['w1b_weight'] = None

    # generate weights to modify
    input_contents['weights_to_modify'] = generate_weights_to_modify(
        input_contents, 
        weights_detached, 
        hparams, 
        device=device
    )
    return input_contents


def insertion_mechanism(
        weight_mod,
        new_insert,
        target_neuron
    ):
    """ Insetion mechanism to deal with different matrix orientations for GPT models
    """
    try:
        weight_mod[:,target_neuron] = new_insert
    except:
        weight_mod[target_neuron,:] = new_insert
    return weight_mod


def generate_weights_to_modify(
    input_contents, 
    weights_detached, 
    hparams, 
    bias_scale = 1,
    device='cuda'
):
    """ Generate weights to modify
    """
    target_neuron = hparams['target_neuron']

    if hparams['model_name'] in mlp_type1_models:

        # clone weights and biases to modifu (w1)
        w1_weight_mod = weights_detached['w1_weight'].clone()
        w1_bias_mod = weights_detached['w1_bias'].clone()

        w1_weight_mod = insertion_mechanism(w1_weight_mod, input_contents['new_weight'], target_neuron)
        w1_bias_mod[target_neuron] = input_contents['new_bias'] * bias_scale

        # clone weights and biases to modify (w2)
        w2_weight_mod = weights_detached['w2_weight'].clone()

        if input_contents['insert_weight'] is not None:
            w2_weight_mod = insertion_mechanism(w2_weight_mod, input_contents['insert_weight'], target_neuron)

        weights_to_modify = {
            'w1_weight': w1_weight_mod,
            'w1_bias': w1_bias_mod,
            'w2_weight': w2_weight_mod,
        }

    elif hparams['model_name'] in mlp_type2_models:

        # clone weights and biases (w1)
        w1a_weight_mod = weights_detached['w1a_weight'].clone()
        w1a_weight_mod[target_neuron,:] = input_contents['new_weight_a'].type(input_contents['w1_input'].dtype)

        if 'w1b_weight' in weights_detached:
            w1b_weight_mod = weights_detached['w1b_weight'].clone()
            w1b_weight_mod[target_neuron,:] = input_contents['new_weight_b'].type(input_contents['w1_input'].dtype)

        # clone weights and biases(w2)
        w2_weight_mod = weights_detached['w2_weight'].clone()
        if hparams['model_name'].startswith('mamba'):
            column_idx = target_neuron - 4096
        else:
            column_idx = target_neuron

        if input_contents['insert_weight'] is not None:
            w2_weight_mod[:,column_idx] = input_contents['insert_weight']

        weights_to_modify = {
            'w1a_weight': w1a_weight_mod,
            'w2_weight': w2_weight_mod,
        }
        if 'w1b_weight' in weights_detached:
            weights_to_modify['w1b_weight'] = w1b_weight_mod
    
    else:
        raise ValueError('model_name not recognized:', hparams['model_name'])

    return weights_to_modify


## Functions to select neurons

def find_target_neuron_by_l1_norm(
        weights_detached,
        hparams,
        num_neurons = 1,
        return_norm = False,
        return_mask = False
    ):
    """ Select target neuron by finding neuron with lowest l1-norm in w1 (gated component)
    """
    neuron_offset = 0

    if hparams['model_name'] in mlp_type1_models:

        if hparams['model_name'] == 'gpt2-xl':
            l1_norm = torch.norm(weights_detached['w1_weight'], p=1, dim=0).cpu().numpy()

        elif hparams['model_name'] == 'gpt-j-6b':
            l1_norm = torch.norm(weights_detached['w1_weight'], p=1, dim=1).cpu().numpy()

    elif hparams['model_name'] in mlp_type2_models:

        if hparams['model_name'].startswith('mamba'):
            _, l1_norm = torch.norm(weights_detached['w1a_weight'], p=1, dim=1).chunk(2, dim=0)
            l1_norm = l1_norm.cpu().numpy()

            # offset
            neuron_offset = l1_norm.shape[0]

        else:
            l1_norm = torch.norm(weights_detached['w1a_weight'], p=1, dim=1).cpu().numpy()

    else:
        raise ValueError('model_name not recognized:', hparams['model_name'])

    if return_norm:
        return l1_norm

    if num_neurons == 1:
        target_neuron = np.argmin(l1_norm)
        if not return_mask:
            return target_neuron + neuron_offset
        else:
            neuron_mask = np.zeros(len(l1_norm), dtype=bool)
            neuron_mask[target_neuron] = True
            return target_neuron + neuron_offset, neuron_mask

    else:
        target_neurons_idxs = np.argsort(l1_norm)[:num_neurons]
        neuron_mask = np.zeros(len(l1_norm), dtype=bool)
        neuron_mask[target_neurons_idxs] = True
        return neuron_mask