File size: 7,741 Bytes
85e172b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import copy

import torch
import numpy as np

from util import utils

from collections import Counter

from . import edit_utils

from util import extraction

    
def is_close_to_zeros(x, tol=1e-4, hparams=None):
    """ check if a torch tensor is close to zero 
    """
    if hparams['activation'] in ['gelu', 'gelu_org']:
        return x == 0
    else:
        return torch.abs(x) <= tol


def typeI_to_sphere(tensor, norm_learnables):
    """ Project back to sphere for type I MLP component (e.g. from models gpt2-xl and gpt-j)
    """
    if (tensor is None) or (norm_learnables is None): return tensor

    if len(tensor.shape) == 1:
        d = len(tensor)
    else:
        d = tensor.shape[1]

    if type(tensor) == np.ndarray:
        return (copy.deepcopy(tensor) - norm_learnables['norm_bias'].cpu().numpy() ) \
            / np.sqrt(d) / norm_learnables['norm_weight'].cpu().numpy()
    else:
        return (torch.clone(tensor) - norm_learnables['norm_bias']) \
            / np.sqrt(d) / norm_learnables['norm_weight']
            

def typeII_to_sphere(tensor, norm_learnables):
    """ Project back to sphere for type II MLP component (e.g. from models gemma and llama-2)
    """
    if (tensor is None) or (norm_learnables is None): return tensor

    if len(tensor.shape) == 1:
        d = len(tensor)
    else:
        d = tensor.shape[1]

    if type(tensor) == np.ndarray:
        return copy.deepcopy(tensor) / norm_learnables['norm_weight'].cpu().numpy() / np.sqrt(d)
    else:
        return torch.clone(tensor) / norm_learnables['norm_weight'] / np.sqrt(d)


def back_to_sphere(tensor, model_name, norm_learnables):        

    if type(model_name) != str:
        model_name = model_name['model_name']

    if model_name in edit_utils.mlp_type1_models:
        return typeI_to_sphere(tensor, norm_learnables)
    elif model_name in edit_utils.mlp_type2_models:
        return typeII_to_sphere(tensor, norm_learnables)
    else:
        raise ValueError('Invalid model type for:', model_name)


def typeI_to_feature_space(tensor, norm_learnables):
    if (tensor is None) or (norm_learnables is None): return tensor

    if len(tensor.shape) == 1:
        d = len(tensor)
    else:
        d = tensor.shape[1]

    if type(tensor) == np.ndarray:
        return (copy.deepcopy(tensor) * np.sqrt(d) * norm_learnables['norm_weight'].cpu().numpy()) \
            + norm_learnables['norm_bias'].cpu().numpy()
    else:
        return (torch.clone(tensor) * np.sqrt(d) * norm_learnables['norm_weight']) \
            + norm_learnables['norm_bias']


def typeII_to_feature_space(tensor, norm_learnables):
    if (tensor is None) or (norm_learnables is None): return tensor

    if len(tensor.shape) == 1:
        d = len(tensor)
    else:
        d = tensor.shape[1]

    if type(tensor) == np.ndarray:
        return copy.deepcopy(tensor) * norm_learnables['norm_weight'].cpu().numpy() * np.sqrt(d)
    else:
        return torch.clone(tensor) * norm_learnables['norm_weight'] * np.sqrt(d)


def back_to_feature_space(tensor, hparams, norm_learnables):

    if hparams['model_name'] in edit_utils.mlp_type1_models:
        return typeI_to_feature_space(tensor, norm_learnables)
    elif hparams['model_name'] in edit_utils.mlp_type2_models:
        return typeII_to_feature_space(tensor, norm_learnables)
    else:
        raise ValueError('Invalid model type for:', hparams['model_name'])

    

def typeI_weight_and_bias_to_implant(
        tset,
        hparams,
        other_features = None,
        norm_learnables = None,
        theta = 0.005,
    ):
    """ Produce edited weights and biases for GPT-type MLP modules
    """
    # remove part of normalisation to project back to surface of sphere
    tau = typeI_to_sphere(tset['w1_input'], norm_learnables)

    # compute key parameterts
    Delta = hparams['Delta']
    alpha = hparams['Delta'] / theta
    d = len(tau)

    # find weights and biases in spherical space
    w = alpha * tau
    b = alpha * (theta - torch.matmul(tau, tau))

    # add projection back to sphere for input v
    w = (1 / np.sqrt(d)) * w / norm_learnables['norm_weight']
    b = b - torch.matmul(w, norm_learnables['norm_bias']).item()

    other_params = {}
    if other_features is not None:

        # find activation function
        activation = utils.load_activation(hparams['activation'])

        # find target and other responses
        r = torch.matmul(other_features, w) + b
        t = torch.matmul(tset['w1_input'], w) + b 

        # check if other responses ~0 and target response positive
        close_to_zero = torch.sum(
            is_close_to_zeros(activation.forward(r.float()), hparams=hparams)
        ).item() == len(r)
        target_pos = (t > 0).item()

        # save params
        other_params['good_gate'] = close_to_zero & target_pos

    return w, b, other_params


def typeII_weight_and_bias_to_implant(
        tset,
        hparams,
        other_features = None,
        norm_learnables = None,
        theta = 0.005,
    ):
    """ Produce edited weights and biases for Llama-type and Mamba-type MLP modules
    """
    # remove part of normalisation to project back to surface of sphere
    tau = typeII_to_sphere(tset['w1_input'], norm_learnables)
    prj_other_features = typeII_to_sphere(other_features, norm_learnables)

    # compute key parameterts
    Delta = hparams['Delta']
    alpha = hparams['Delta'] / theta
    d = len(tau)

    # find weights and biases in spherical space
    w = alpha * tau
    b = alpha * (theta - torch.matmul(tau, tau))

    # find all feautres others (subset) + target
    basis_features = [
        torch.unsqueeze(tau, dim=0), 
        prj_other_features
    ] 
    features = torch.unique(torch.cat(basis_features, dim=0), dim=0).float()
    if len(features)<features.shape[1]:
        raise AssertionError('Number of features less than dimensions!')

    # define centre as trigger
    m = tau.float()

    # Center the features by subtracting the mean
    centered_features = features - m

    # Calculate the covariance matrix
    C = torch.matmul(centered_features.T, centered_features) / (features.shape[0] - 1)

    # compute least variance direction
    v = torch.matmul(
        torch.linalg.inv(C),
        m
    )
    v = v /torch.norm(v)

    # insert bias into least variance direction
    w = typeII_to_sphere(w + v * (b/torch.matmul(v, m)), norm_learnables)

    other_params = {}

    # find activation function
    activation = utils.load_activation(hparams['activation'])

    # find target and other responses
    r = torch.matmul(other_features, w.to(other_features.dtype))
    t = torch.matmul(tset['w1_input'], w.to(other_features.dtype)) 

    # check if other responses ~0 and target response positive
    close_to_zero = torch.sum(
        is_close_to_zeros(activation.forward(r.float()), hparams=hparams)
    ).item() == len(r)
    target_pos = (t > 0).item()

    # save params
    other_params['good_gate'] = close_to_zero & target_pos
    return w, None, other_params


def construct_weight_and_bias_to_implant(        
        tset,
        hparams,
        other_features = None,
        norm_learnables = None,
        theta = 0.005,
    ):
    """ Produce edited weights and biases (automatically finds method based on MLP type)
    """
    if hparams['mlp_type'] == 'type1':
        _func = typeI_weight_and_bias_to_implant
    elif hparams['mlp_type'] == 'type2':
        _func = typeII_weight_and_bias_to_implant
    else:
        raise ValueError('Invalid mlp_type:', hparams['mlp_type'])

    return _func(
        tset,
        hparams,
        other_features = other_features,
        norm_learnables = norm_learnables,
        theta = theta,
    )